Dreamspire's picture
custom_nodes
f2dbf59
raw
history blame
3.33 kB
from .imagefunc import *
NODE_NAME = 'BlendIfMask'
def norm_value(value):
if value < 0.01:
value = 0.01
if value > 0.99:
value = 0.99
return value
class BlendIfMask:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(self):
blend_if_list = ["gray", "red", "green", "blue"]
return {
"required": {
"image": ("IMAGE", ),
"invert_mask": ("BOOLEAN", {"default": True}), # 反转mask
"blend_if": (blend_if_list,),
"black_point": ("INT", {"default": 0, "min": 0, "max": 254, "step": 1, "display": "slider"}),
"black_range": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
"white_point": ("INT", {"default": 255, "min": 1, "max": 255, "step": 1, "display": "slider"}),
"white_range": ("INT", {"default": 0, "min": 0, "max": 255, "step": 1}),
},
"optional": {
"mask": ("MASK",), #
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = 'blend_if_mask'
CATEGORY = '😺dzNodes/LayerMask'
def blend_if_mask(self, image, invert_mask, blend_if,
black_point, black_range,
white_point, white_range,
mask=None
):
ret_masks = []
input_images = []
input_masks = []
for i in image:
input_images.append(torch.unsqueeze(i, 0))
m = tensor2pil(i)
if m.mode == 'RGBA':
input_masks.append(m.split()[-1])
else:
input_masks.append(Image.new('L', size=m.size, color='white'))
if mask is not None:
if mask.dim() == 2:
mask = torch.unsqueeze(mask, 0)
input_masks = []
for m in mask:
if invert_mask:
m = 1 - m
input_masks.append(tensor2pil(torch.unsqueeze(m, 0)).convert('L'))
max_batch = max(len(input_images), len(input_masks))
for i in range(max_batch):
_image = input_images[i] if i < len(input_images) else input_images[-1]
_image = tensor2pil(_image).convert('RGB')
if blend_if == "red":
gray = image_channel_split(_image, 'RGB')[0]
elif blend_if == "green":
gray = image_channel_split(_image, 'RGB')[1]
elif blend_if == "blue":
gray = image_channel_split(_image, 'RGB')[2]
else:
gray = _image.convert('L')
_mask = input_masks[i] if i < len(input_masks) else input_masks[-1]
gray = histogram_range(gray, black_point, black_range, white_point, white_range)
black = Image.new('L', size=_image.size, color='black')
_mask = ImageChops.invert(_mask)
gray.paste(black, mask=_mask)
ret_masks.append(image2mask(gray))
log(f"{NODE_NAME} Processed {len(ret_masks)} image(s).", message_type='finish')
return (torch.cat(ret_masks, dim=0),)
NODE_CLASS_MAPPINGS = {
"LayerMask: BlendIf Mask": BlendIfMask
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LayerMask: BlendIf Mask": "LayerMask: BlendIf Mask"
}