Dreamspire's picture
custom_nodes
f2dbf59
import json
import os
from .libs import common
import folder_paths
import nodes
from server import PromptServer
from .libs.utils import TaggedCache, any_typ
import logging
root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
settings_file = os.path.join(root_dir, 'cache_settings.json')
try:
with open(settings_file) as f:
cache_settings = json.load(f)
except Exception as e:
print(e)
cache_settings = {}
cache = TaggedCache(cache_settings)
cache_count = {}
def update_cache(k, tag, v):
cache[k] = (tag, v)
cnt = cache_count.get(k)
if cnt is None:
cnt = 0
cache_count[k] = cnt
else:
cache_count[k] += 1
def cache_weak_hash(k):
cnt = cache_count.get(k)
if cnt is None:
cnt = 0
return k, cnt
class CacheBackendData:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("STRING", {"multiline": False, "placeholder": "Input data key (e.g. 'model a', 'chunli lora', 'girl latent 3', ...)"}),
"tag": ("STRING", {"multiline": False, "placeholder": "Tag: short description"}),
"data": (any_typ,),
}
}
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("data opt",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
def doit(self, key, tag, data):
global cache
if key == '*':
print(f"[Inspire Pack] CacheBackendData: '*' is reserved key. Cannot use that key")
update_cache(key, tag, (False, data))
return (data,)
class CacheBackendDataNumberKey:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"tag": ("STRING", {"multiline": False, "placeholder": "Tag: short description"}),
"data": (any_typ,),
}
}
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("data opt",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
def doit(self, key, tag, data):
global cache
update_cache(key, tag, (False, data))
return (data,)
class CacheBackendDataList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("STRING", {"multiline": False, "placeholder": "Input data key (e.g. 'model a', 'chunli lora', 'girl latent 3', ...)"}),
"tag": ("STRING", {"multiline": False, "placeholder": "Tag: short description"}),
"data": (any_typ,),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("data opt",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
def doit(self, key, tag, data):
global cache
if key == '*':
print(f"[Inspire Pack] CacheBackendDataList: '*' is reserved key. Cannot use that key")
update_cache(key[0], tag[0], (True, data))
return (data,)
class CacheBackendDataNumberKeyList:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"tag": ("STRING", {"multiline": False, "placeholder": "Tag: short description"}),
"data": (any_typ,),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("data opt",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
def doit(self, key, tag, data):
global cache
update_cache(key[0], tag[0], (True, data))
return (data,)
class RetrieveBackendData:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("STRING", {"multiline": False, "placeholder": "Input data key (e.g. 'model a', 'chunli lora', 'girl latent 3', ...)"}),
}
}
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("data",)
OUTPUT_IS_LIST = (True,)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
@staticmethod
def doit(key):
global cache
v = cache.get(key)
if v is None:
print(f"[RetrieveBackendData] '{key}' is unregistered key.")
return (None,)
is_list, data = v[1]
if is_list:
return (data,)
else:
return ([data],)
@staticmethod
def IS_CHANGED(key):
return cache_weak_hash(key)
class RetrieveBackendDataNumberKey(RetrieveBackendData):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}
}
class RemoveBackendData:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("STRING", {"multiline": False, "placeholder": "Input data key ('*' = clear all)"}),
},
"optional": {
"signal_opt": (any_typ,),
}
}
RETURN_TYPES = (any_typ,)
RETURN_NAMES = ("signal",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
@staticmethod
def doit(key, signal_opt=None):
global cache
if key == '*':
cache = TaggedCache(cache_settings)
elif key in cache:
del cache[key]
else:
print(f"[Inspire Pack] RemoveBackendData: invalid data key {key}")
return (signal_opt,)
class RemoveBackendDataNumberKey(RemoveBackendData):
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
"optional": {
"signal_opt": (any_typ,),
}
}
@staticmethod
def doit(key, signal_opt=None):
global cache
if key in cache:
del cache[key]
else:
print(f"[Inspire Pack] RemoveBackendDataNumberKey: invalid data key {key}")
return (signal_opt,)
class ShowCachedInfo:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cache_info": ("STRING", {"multiline": True, "default": ""}),
"key": ("STRING", {"multiline": False, "default": ""}),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
RETURN_TYPES = ()
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
OUTPUT_NODE = True
@staticmethod
def get_data():
global cache
text1 = "---- [String Key Caches] ----\n"
text2 = "---- [Number Key Caches] ----\n"
for k, v in cache.items():
tag = 'N/A(tag)' if v[0] == '' else v[0]
if isinstance(k, str):
text1 += f'{k}: {tag}\n'
else:
text2 += f'{k}: {tag}\n'
text3 = "---- [TagCache Settings] ----\n"
for k, v in cache._tag_settings.items():
text3 += f'{k}: {v}\n'
for k, v in cache._data.items():
if k not in cache._tag_settings:
text3 += f'{k}: {v.maxsize}\n'
return f'{text1}\n{text2}\n{text3}'
@staticmethod
def set_cache_settings(data: str):
global cache
settings = data.split("---- [TagCache Settings] ----\n")[-1].strip().split("\n")
new_tag_settings = {}
for s in settings:
k, v = s.split(":")
new_tag_settings[k] = int(v.strip())
if new_tag_settings == cache._tag_settings:
# tag settings is not changed
return
# print(f'set to {new_tag_settings}')
new_cache = TaggedCache(new_tag_settings)
for k, v in cache.items():
new_cache[k] = v
cache = new_cache
def doit(self, cache_info, key, unique_id):
text = ShowCachedInfo.get_data()
PromptServer.instance.send_sync("inspire-node-feedback", {"node_id": unique_id, "widget_name": "cache_info", "type": "text", "data": text})
return {}
@classmethod
def IS_CHANGED(cls, **kwargs):
return float("NaN")
class CheckpointLoaderSimpleShared(nodes.CheckpointLoaderSimple):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
"key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'ckpt_name' as the key."}),
},
"optional": {
"mode": (['Auto', 'Override Cache', 'Read Only'],),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "STRING")
RETURN_NAMES = ("model", "clip", "vae", "cache key")
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
def doit(self, ckpt_name, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[CheckpointLoaderSimpleShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = ckpt_name
else:
key = key_opt.strip()
if key not in cache or mode == 'Override Cache':
res = self.load_checkpoint(ckpt_name)
update_cache(key, "ckpt", (False, res))
cache_kind = 'ckpt'
print(f"[Inspire Pack] CheckpointLoaderSimpleShared: Ckpt '{ckpt_name}' is cached to '{key}'.")
else:
cache_kind, (_, res) = cache[key]
print(f"[Inspire Pack] CheckpointLoaderSimpleShared: Cached ckpt '{key}' is loaded. (Loading skip)")
if cache_kind == 'ckpt':
model, clip, vae = res
elif cache_kind == 'unclip_ckpt':
model, clip, vae, _ = res
else:
raise Exception(f"[CheckpointLoaderSimpleShared] Unexpected cache_kind '{cache_kind}'")
return model, clip, vae, key
@staticmethod
def IS_CHANGED(ckpt_name, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[CheckpointLoaderSimpleShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = ckpt_name
else:
key = key_opt.strip()
if mode == 'Read Only':
return (None, cache_weak_hash(key))
elif mode == 'Override Cache':
return (ckpt_name, key)
return (None, cache_weak_hash(key))
class LoadDiffusionModelShared(nodes.UNETLoader):
@classmethod
def INPUT_TYPES(s):
return {"required": { "model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "Diffusion Model Name"}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],),
"key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'model_name' as the key."}),
"mode": (['Auto', 'Override Cache', 'Read Only'],),
}
}
RETURN_TYPES = ("MODEL", "STRING")
RETURN_NAMES = ("model", "cache key")
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
def doit(self, model_name, weight_dtype, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoadDiffusionModelShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = f"{model_name}_{weight_dtype}"
else:
key = key_opt.strip()
if key not in cache or mode == 'Override Cache':
model = self.load_unet(model_name, weight_dtype)[0]
update_cache(key, "diffusion", (False, model))
print(f"[Inspire Pack] LoadDiffusionModelShared: diffusion model '{model_name}' is cached to '{key}'.")
else:
_, (_, model) = cache[key]
print(f"[Inspire Pack] LoadDiffusionModelShared: Cached diffusion model '{key}' is loaded. (Loading skip)")
return model, key
@staticmethod
def IS_CHANGED(model_name, weight_dtype, key_opt, mode='Auto'):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoadDiffusionModelShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = f"{model_name}_{weight_dtype}"
else:
key = key_opt.strip()
if mode == 'Read Only':
return None, cache_weak_hash(key)
elif mode == 'Override Cache':
return model_name, key
return None, cache_weak_hash(key)
class LoadTextEncoderShared:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model_name1": (folder_paths.get_filename_list("text_encoders"), ),
"model_name2": (["None"] + folder_paths.get_filename_list("text_encoders"), ),
"model_name3": (["None"] + folder_paths.get_filename_list("text_encoders"), ),
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "sdxl", "flux", "hunyuan_video"], ),
"key_opt": ("STRING", {"multiline": False, "placeholder": "If empty, use 'model_name' as the key."}),
"mode": (['Auto', 'Override Cache', 'Read Only'],),
},
"optional": { "device": (["default", "cpu"], {"advanced": True}), }
}
RETURN_TYPES = ("CLIP", "STRING")
RETURN_NAMES = ("clip", "cache key")
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
DESCRIPTION = \
("[Recipes single]\n"
"stable_diffusion: clip-l\n"
"stable_cascade: clip-g\n"
"sd3: t5 / clip-g / clip-l\n"
"stable_audio: t5\n"
"mochi: t5\n"
"cosmos: old t5 xxl\n\n"
"[Recipes dual]\n"
"sdxl: clip-l, clip-g\n"
"sd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\n"
"flux: clip-l, t5\n\n"
"[Recipes triple]\n"
"sd3: clip-l, clip-g, t5")
def doit(self, model_name1, model_name2, model_name3, type, key_opt, mode='Auto', device="default"):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoadTextEncoderShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = model_name1
if model_name2 is not None:
key += f"_{model_name2}"
if model_name3 is not None:
key += f"_{model_name3}"
key += f"_{type}_{device}"
else:
key = key_opt.strip()
if key not in cache or mode == 'Override Cache':
if model_name2 != "None" and model_name3 != "None": # triple text encoder
if len({model_name1, model_name2, model_name3}) < 3:
logging.error("[LoadTextEncoderShared] The same model has been selected multiple times.")
raise ValueError("The same model has been selected multiple times.")
if type not in ["sd3"]:
logging.error("[LoadTextEncoderShared] Currently, the triple text encoder is only supported in `sd3`.")
raise ValueError("Currently, the triple text encoder is only supported in `sd3`.")
res = nodes.NODE_CLASS_MAPPINGS["TripleCLIPLoader"]().load_clip(model_name1, model_name2, model_name3)[0]
elif model_name2 != "None" or model_name3 != "None": # dual text encoder
second_model = model_name2 if model_name2 != "None" else model_name3
if model_name1 == second_model:
logging.error("[LoadTextEncoderShared] You have selected the same model for both.")
raise ValueError("[LoadTextEncoderShared] You have selected the same model for both.")
if type not in ["sdxl", "sd3", "flux", "hunyuan_video"]:
logging.error("[LoadTextEncoderShared] Currently, the triple text encoder is only supported in `sdxl, sd3, flux, hunyuan_video`.")
raise ValueError("Currently, the triple text encoder is only supported in `sdxl, sd3, flux, hunyuan_video`.")
res = nodes.NODE_CLASS_MAPPINGS["DualCLIPLoader"]().load_clip(model_name1, second_model, type=type, device=device)[0]
else: # single text encoder
if type not in ["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos"]:
logging.error("[LoadTextEncoderShared] Currently, the single text encoder is only supported in `stable_diffusion, stable_cascade, sd3, stable_audio, mochi, ltxv, pixart, cosmos`.")
raise ValueError("Currently, the single text encoder is only supported in `stable_diffusion, stable_cascade, sd3, stable_audio, mochi, ltxv, pixart, cosmos`.")
res = nodes.NODE_CLASS_MAPPINGS["CLIPLoader"]().load_clip(model_name1, type=type, device=device)[0]
update_cache(key, "diffusion", (False, res))
print(f"[Inspire Pack] LoadTextEncoderShared: text encoder model set is cached to '{key}'.")
else:
_, (_, res) = cache[key]
print(f"[Inspire Pack] LoadTextEncoderShared: Cached text encoder model set '{key}' is loaded. (Loading skip)")
return res, key
@staticmethod
def IS_CHANGED(model_name1, model_name2, model_name3, type, key_opt, mode='Auto', device="default"):
if mode == 'Read Only':
if key_opt.strip() == '':
raise Exception("[LoadTextEncoderShared] key_opt cannot be omit if mode is 'Read Only'")
key = key_opt.strip()
elif key_opt.strip() == '':
key = model_name1
if model_name2 is not None:
key += f"_{model_name2}"
if model_name3 is not None:
key += f"_{model_name3}"
key += f"_{type}_{device}"
else:
key = key_opt.strip()
if mode == 'Read Only':
return None, cache_weak_hash(key)
elif mode == 'Override Cache':
return f"{model_name1}_{model_name2}_{model_name3}_{type}_{device}", key
return None, cache_weak_hash(key)
class StableCascade_CheckpointLoader:
@classmethod
def INPUT_TYPES(s):
ckpts = folder_paths.get_filename_list("checkpoints")
default_stage_b = ''
default_stage_c = ''
sc_ckpts = [x for x in ckpts if 'cascade' in x.lower()]
sc_b_ckpts = [x for x in sc_ckpts if 'stage_b' in x.lower()]
sc_c_ckpts = [x for x in sc_ckpts if 'stage_c' in x.lower()]
if len(sc_b_ckpts) == 0:
sc_b_ckpts = [x for x in ckpts if 'stage_b' in x.lower()]
if len(sc_c_ckpts) == 0:
sc_c_ckpts = [x for x in ckpts if 'stage_c' in x.lower()]
if len(sc_b_ckpts) == 0:
sc_b_ckpts = ckpts
if len(sc_c_ckpts) == 0:
sc_c_ckpts = ckpts
if len(sc_b_ckpts) > 0:
default_stage_b = sc_b_ckpts[0]
if len(sc_c_ckpts) > 0:
default_stage_c = sc_c_ckpts[0]
return {"required": {
"stage_b": (ckpts, {'default': default_stage_b}),
"key_opt_b": ("STRING", {"multiline": False, "placeholder": "If empty, use 'stage_b' as the key."}),
"stage_c": (ckpts, {'default': default_stage_c}),
"key_opt_c": ("STRING", {"multiline": False, "placeholder": "If empty, use 'stage_c' as the key."}),
"cache_mode": (["none", "stage_b", "stage_c", "all"], {"default": "none"}),
}}
RETURN_TYPES = ("MODEL", "VAE", "MODEL", "VAE", "CLIP_VISION", "CLIP", "STRING", "STRING")
RETURN_NAMES = ("b_model", "b_vae", "c_model", "c_vae", "c_clip_vision", "clip", "key_b", "key_c")
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
def doit(self, stage_b, key_opt_b, stage_c, key_opt_c, cache_mode):
if key_opt_b.strip() == '':
key_b = stage_b
else:
key_b = key_opt_b.strip()
if key_opt_c.strip() == '':
key_c = stage_c
else:
key_c = key_opt_c.strip()
if cache_mode in ['stage_b', "all"]:
if key_b not in cache:
res_b = nodes.CheckpointLoaderSimple().load_checkpoint(ckpt_name=stage_b)
update_cache(key_b, "ckpt", (False, res_b))
print(f"[Inspire Pack] StableCascade_CheckpointLoader: Ckpt '{stage_b}' is cached to '{key_b}'.")
else:
_, (_, res_b) = cache[key_b]
print(f"[Inspire Pack] StableCascade_CheckpointLoader: Cached ckpt '{key_b}' is loaded. (Loading skip)")
b_model, clip, b_vae = res_b
else:
b_model, clip, b_vae = nodes.CheckpointLoaderSimple().load_checkpoint(ckpt_name=stage_b)
if cache_mode in ['stage_c', "all"]:
if key_c not in cache:
res_c = nodes.unCLIPCheckpointLoader().load_checkpoint(ckpt_name=stage_c)
update_cache(key_c, "unclip_ckpt", (False, res_c))
print(f"[Inspire Pack] StableCascade_CheckpointLoader: Ckpt '{stage_c}' is cached to '{key_c}'.")
else:
_, (_, res_c) = cache[key_c]
print(f"[Inspire Pack] StableCascade_CheckpointLoader: Cached ckpt '{key_c}' is loaded. (Loading skip)")
c_model, _, c_vae, clip_vision = res_c
else:
c_model, _, c_vae, clip_vision = nodes.unCLIPCheckpointLoader().load_checkpoint(ckpt_name=stage_c)
return b_model, b_vae, c_model, c_vae, clip_vision, clip, key_b, key_c
class IsCached:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"key": ("STRING", {"multiline": False}),
},
"hidden": {
"unique_id": "UNIQUE_ID"
}
}
RETURN_TYPES = ("BOOLEAN", )
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
@staticmethod
def IS_CHANGED(key, unique_id):
return common.is_changed(unique_id, key in cache)
def doit(self, key, unique_id):
return (key in cache,)
# WIP: not properly working, yet
class CacheBridge:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"value": (any_typ,),
"mode": ("BOOLEAN", {"default": True, "label_off": "cached", "label_on": "passthrough"}),
},
"hidden": {
"unique_id": "UNIQUE_ID"
}
}
RETURN_TYPES = (any_typ, )
RETURN_NAMES = ("value",)
FUNCTION = "doit"
CATEGORY = "InspirePack/Backend"
@staticmethod
def IS_CHANGED(value, mode, unique_id):
if not mode and unique_id in common.changed_cache:
return common.not_changed_value(unique_id)
else:
return common.changed_value(unique_id)
def doit(self, value, mode, unique_id):
if not mode:
# cache mode
if unique_id not in common.changed_cache:
common.changed_cache[unique_id] = value
common.changed_count_cache[unique_id] = 0
return (common.changed_cache[unique_id],)
else:
common.changed_cache[unique_id] = value
common.changed_count_cache[unique_id] = 0
return (common.changed_cache[unique_id],)
NODE_CLASS_MAPPINGS = {
"CacheBackendData //Inspire": CacheBackendData,
"CacheBackendDataNumberKey //Inspire": CacheBackendDataNumberKey,
"CacheBackendDataList //Inspire": CacheBackendDataList,
"CacheBackendDataNumberKeyList //Inspire": CacheBackendDataNumberKeyList,
"RetrieveBackendData //Inspire": RetrieveBackendData,
"RetrieveBackendDataNumberKey //Inspire": RetrieveBackendDataNumberKey,
"RemoveBackendData //Inspire": RemoveBackendData,
"RemoveBackendDataNumberKey //Inspire": RemoveBackendDataNumberKey,
"ShowCachedInfo //Inspire": ShowCachedInfo,
"CheckpointLoaderSimpleShared //Inspire": CheckpointLoaderSimpleShared,
"LoadDiffusionModelShared //Inspire": LoadDiffusionModelShared,
"LoadTextEncoderShared //Inspire": LoadTextEncoderShared,
"StableCascade_CheckpointLoader //Inspire": StableCascade_CheckpointLoader,
"IsCached //Inspire": IsCached,
# "CacheBridge //Inspire": CacheBridge,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CacheBackendData //Inspire": "Cache Backend Data (Inspire)",
"CacheBackendDataNumberKey //Inspire": "Cache Backend Data [NumberKey] (Inspire)",
"CacheBackendDataList //Inspire": "Cache Backend Data List (Inspire)",
"CacheBackendDataNumberKeyList //Inspire": "Cache Backend Data List [NumberKey] (Inspire)",
"RetrieveBackendData //Inspire": "Retrieve Backend Data (Inspire)",
"RetrieveBackendDataNumberKey //Inspire": "Retrieve Backend Data [NumberKey] (Inspire)",
"RemoveBackendData //Inspire": "Remove Backend Data (Inspire)",
"RemoveBackendDataNumberKey //Inspire": "Remove Backend Data [NumberKey] (Inspire)",
"ShowCachedInfo //Inspire": "Show Cached Info (Inspire)",
"CheckpointLoaderSimpleShared //Inspire": "Shared Checkpoint Loader (Inspire)",
"LoadDiffusionModelShared //Inspire": "Shared Diffusion Model Loader (Inspire)",
"LoadTextEncoderShared //Inspire": "Shared Text Encoder Loader (Inspire)",
"StableCascade_CheckpointLoader //Inspire": "Stable Cascade Checkpoint Loader (Inspire)",
"IsCached //Inspire": "Is Cached (Inspire)",
# "CacheBridge //Inspire": "Cache Bridge (Inspire)"
}