Dreamspire's picture
custom_nodes
f2dbf59
import folder_paths
import comfy.utils
import comfy.lora
import os
import torch
import numpy as np
import nodes
import re
import json
from comfy.cli_args import args
from safetensors.torch import safe_open
import ast
from server import PromptServer
from .libs import utils
model_path = folder_paths.models_dir
utils.add_folder_path_and_extensions("lbw_models", [os.path.join(model_path, "lbw_models")], {'.safetensors'})
def is_numeric_string(input_str):
return re.match(r'^-?\d+(\.\d+)?$', input_str) is not None
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
def load_lbw_preset(filename):
path = os.path.join(os.path.dirname(__file__), "..", "resources", filename)
path = os.path.abspath(path)
preset_list = []
if os.path.exists(path):
with open(path, 'r') as file:
for line in file:
preset_list.append(line.strip())
return preset_list
else:
return []
def parse_unet_num(s):
if s[1] == '.':
return int(s[0])
else:
return int(s)
class MakeLBW:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
preset = ["Preset"] # 20
preset += load_lbw_preset("lbw-preset.txt")
preset += load_lbw_preset("lbw-preset.custom.txt")
preset = [name for name in preset if not name.startswith('@')]
lora_names = folder_paths.get_filename_list("loras")
lora_dirs = [os.path.dirname(name) for name in lora_names]
lora_dirs = ["All"] + list(set(lora_dirs))
return {"required": {"model": ("MODEL",),
"clip": ("CLIP", ),
"category_filter": (lora_dirs,),
"lora_name": (lora_names, ),
"inverse": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False", "tooltip": "Apply the following weights for each block:\nTrue: 1 - weight\nFalse: weight"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": ""}),
"A": ("FLOAT", {"default": 4.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"B": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"preset": (preset,),
"block_vector": ("STRING", {"multiline": True, "placeholder": "block weight vectors", "default": "1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1", "pysssss.autocomplete": False}),
"bypass": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False"}),
}
}
RETURN_TYPES = ("LBW_MODEL", "STRING")
RETURN_NAMES = ("lbw_model", "populated_vector")
FUNCTION = "doit"
CATEGORY = "InspirePack/LoraBlockWeight"
DESCRIPTION = "Instead of directly applying the LoRA Block Weight to the MODEL, it is generated in a separate LBW_MODEL form."
def __init__(self):
self.loaded_lora = None
def doit(self, model, clip, lora_name, inverse, seed, A, B, preset, block_vector, bypass=False, category_filter=None):
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
block_weights, muted_weights, populated_vector = LoraLoaderBlockWeight.load_lbw(model, clip, lora, inverse, seed, A, B, block_vector)
lbw_model = {
'blocks': block_weights,
'muted': muted_weights
}
return lbw_model, populated_vector
class LoraLoaderBlockWeight:
def __init__(self):
self.loaded_lora = None
@classmethod
def INPUT_TYPES(s):
preset = ["Preset"] # 20
preset += load_lbw_preset("lbw-preset.txt")
preset += load_lbw_preset("lbw-preset.custom.txt")
preset = [name for name in preset if not name.startswith('@')]
lora_names = folder_paths.get_filename_list("loras")
lora_dirs = [os.path.dirname(name) for name in lora_names]
lora_dirs = ["All"] + list(set(lora_dirs))
return {"required": {"model": ("MODEL",),
"clip": ("CLIP", ),
"category_filter": (lora_dirs,),
"lora_name": (lora_names, ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"inverse": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False", "tooltip": "Apply the following weights for each block:\nTrue: 1 - weight\nFalse: weight"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "tooltip": ""}),
"A": ("FLOAT", {"default": 4.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"B": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"preset": (preset,),
"block_vector": ("STRING", {"multiline": True, "placeholder": "block weight vectors", "default": "1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1", "pysssss.autocomplete": False}),
"bypass": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False"}),
}
}
RETURN_TYPES = ("MODEL", "CLIP", "STRING")
RETURN_NAMES = ("model", "clip", "populated_vector")
FUNCTION = "doit"
CATEGORY = "InspirePack/LoraBlockWeight"
@staticmethod
def validate(vectors):
if len(vectors) < 12:
return False
for x in vectors:
if x in ['R', 'r', 'U', 'u', 'A', 'a', 'B', 'b'] or is_numeric_string(x):
continue
else:
subvectors = x.strip().split(' ')
for y in subvectors:
y = y.strip()
if y not in ['R', 'r', 'U', 'u', 'A', 'a', 'B', 'b'] and not is_numeric_string(y):
return False
return True
@staticmethod
def convert_vector_value(A, B, vector_value):
def simple_vector(x):
if x in ['U', 'u']:
ratio = np.random.uniform(-1.5, 1.5)
ratio = round(ratio, 2)
elif x in ['R', 'r']:
ratio = np.random.uniform(0, 3.0)
ratio = round(ratio, 2)
elif x == 'A':
ratio = A
elif x == 'a':
ratio = A/2
elif x == 'B':
ratio = B
elif x == 'b':
ratio = B/2
elif is_numeric_string(x):
ratio = float(x)
else:
ratio = None
return ratio
v = simple_vector(vector_value)
if v is not None:
ratios = [v]
else:
ratios = [simple_vector(x) for x in vector_value.split(" ")]
return ratios
@staticmethod
def norm_value(value): # make to int if 1.0 or 0.0
if value == 1:
return 1
elif value == 0:
return 0
else:
return value
@staticmethod
def block_spec_parser(loaded, spec):
if not spec.startswith("%"):
return spec
else:
items = [x.strip() for x in spec[1:].split(',')]
input_blocks_set = set()
middle_blocks_set= set()
output_blocks_set = set()
double_blocks_set = set()
single_blocks_set = set()
for key, v in loaded.items():
if isinstance(key, tuple):
k = key[0]
else:
k = key
k_unet = k[len("diffusion_model."):]
if k_unet.startswith("input_blocks."):
k_unet_num = k_unet[len("input_blocks."):len("input_blocks.")+2]
k_unet_int = parse_unet_num(k_unet_num)
input_blocks_set.add(k_unet_int)
elif k_unet.startswith("middle_block."):
k_unet_num = k_unet[len("middle_block."):len("middle_block.")+2]
k_unet_int = parse_unet_num(k_unet_num)
middle_blocks_set.add(k_unet_int)
elif k_unet.startswith("output_blocks."):
k_unet_num = k_unet[len("output_blocks."):len("output_blocks.")+2]
k_unet_int = parse_unet_num(k_unet_num)
output_blocks_set.add(k_unet_int)
elif k_unet.startswith("double_blocks."):
k_unet_num = k_unet[len("double_blocks."):len("double_blocks.") + 2]
k_unet_int = parse_unet_num(k_unet_num)
double_blocks_set.add(k_unet_int)
elif k_unet.startswith("single_blocks."):
k_unet_num = k_unet[len("single_blocks."):len("single_blocks.") + 2]
k_unet_int = parse_unet_num(k_unet_num)
single_blocks_set.add(k_unet_int)
pat1 = re.compile(r"(default|base)=([0-9.]+)")
pat2 = re.compile(r"(in|out|mid|double|single)([0-9]+)-([0-9]+)=([0-9.]+)")
pat3 = re.compile(r"(in|out|mid|double|single)([0-9]+)=([0-9.]+)")
pat4 = re.compile(r"(in|out|mid|double|single)=([0-9.]+)")
base_spec = None
default_spec = 1.0
for item in items:
match = pat1.match(item)
if match:
if match[1] == 'base':
base_spec = match[2]
continue
if match[1] == 'default':
default_spec = match[2]
continue
if base_spec is None:
base_spec = default_spec
input_blocks = [default_spec] * len(input_blocks_set)
middle_blocks = [default_spec] * len(middle_blocks_set)
output_blocks = [default_spec] * len(output_blocks_set)
double_blocks = [default_spec] * len(double_blocks_set)
single_blocks = [default_spec] * len(single_blocks_set)
for item in items:
match = pat2.match(item)
if match:
for x in range(int(match[2])-1, int(match[3])):
value = float(match[4])
if x < 0:
continue
if match[1] == 'in' and len(input_blocks) > x:
input_blocks[x] = value
elif match[1] == 'out' and len(output_blocks) > x:
output_blocks[x] = value
elif match[1] == 'mid' and len(middle_blocks) > x:
middle_blocks[x] = value
elif match[1] == 'double' and len(double_blocks) > x:
double_blocks[x] = value
elif match[1] == 'single' and len(single_blocks) > x:
single_blocks[x] = value
continue
match = pat3.match(item)
if match:
value = float(match[3])
x = int(match[2]) - 1
if x < 0:
continue
if match[1] == 'in' and len(input_blocks) > x:
input_blocks[x] = value
elif match[1] == 'out' and len(output_blocks) > x:
output_blocks[x] = value
elif match[1] == 'mid' and len(middle_blocks) > x:
middle_blocks[x] = value
elif match[1] == 'double' and len(double_blocks) > x:
double_blocks[x] = value
elif match[1] == 'single' and len(single_blocks) > x:
single_blocks[x] = value
continue
match = pat4.match(item)
if match:
value = float(match[2])
if match[1] == 'in':
input_blocks = [value] * len(input_blocks)
elif match[1] == 'out':
output_blocks = [value] * len(output_blocks)
elif match[1] == 'mid':
middle_blocks = [value] * len(middle_blocks)
elif match[1] == 'double':
double_blocks = [value] * len(double_blocks)
elif match[1] == 'single':
single_blocks = [value] * len(single_blocks)
continue
# concat specs
res = [str(base_spec)]
for x in (input_blocks + middle_blocks + output_blocks + double_blocks + single_blocks):
res.append(str(x))
return ",".join(res)
@staticmethod
def load_lbw(model, clip, lora, inverse, seed, A, B, block_vector):
key_map = comfy.lora.model_lora_keys_unet(model.model)
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
block_vector = LoraLoaderBlockWeight.block_spec_parser(loaded, block_vector)
block_vector = block_vector.split(":")
if len(block_vector) > 1:
block_vector = block_vector[1]
else:
block_vector = block_vector[0]
vector = block_vector.split(",")
if not LoraLoaderBlockWeight.validate(vector):
preset_dict = load_preset_dict()
if len(vector) > 0 and vector[0].strip() in preset_dict:
vector = preset_dict[vector[0].strip()].split(",")
else:
raise ValueError(f"[LoraLoaderBlockWeight] invalid block_vector '{block_vector}'")
# sort: input, middle, output, others
input_blocks = []
middle_blocks = []
output_blocks = []
double_blocks = []
single_blocks = []
others = []
for key, v in loaded.items():
if isinstance(key, tuple):
k = key[0]
else:
k = key
k_unet = k[len("diffusion_model."):]
if k_unet.startswith("input_blocks."):
k_unet_num = k_unet[len("input_blocks."):len("input_blocks.")+2]
input_blocks.append((k, v, parse_unet_num(k_unet_num), k_unet))
elif k_unet.startswith("middle_block."):
k_unet_num = k_unet[len("middle_block."):len("middle_block.")+2]
middle_blocks.append((k, v, parse_unet_num(k_unet_num), k_unet))
elif k_unet.startswith("output_blocks."):
k_unet_num = k_unet[len("output_blocks."):len("output_blocks.")+2]
output_blocks.append((k, v, parse_unet_num(k_unet_num), k_unet))
elif k_unet.startswith("double_blocks."):
k_unet_num = k_unet[len("double_blocks."):len("double_blocks.")+2]
double_blocks.append((key, v, parse_unet_num(k_unet_num), k_unet))
elif k_unet.startswith("single_blocks."):
k_unet_num = k_unet[len("single_blocks."):len("single_blocks.")+2]
single_blocks.append((key, v, parse_unet_num(k_unet_num), k_unet))
else:
others.append((k, v, k_unet))
input_blocks = sorted(input_blocks, key=lambda x: x[2])
middle_blocks = sorted(middle_blocks, key=lambda x: x[2])
output_blocks = sorted(output_blocks, key=lambda x: x[2])
double_blocks = sorted(double_blocks, key=lambda x: x[2])
single_blocks = sorted(single_blocks, key=lambda x: x[2])
# prepare patch
np.random.seed(seed % (2**31))
populated_vector_list = []
ratios = []
ratio = 1.0
vector_i = 1
last_k_unet_num = None
block_weights = {}
muted_weights = []
for k, v, k_unet_num, k_unet in (input_blocks + middle_blocks + output_blocks + double_blocks + single_blocks):
if last_k_unet_num != k_unet_num and len(vector) > vector_i:
ratios = LoraLoaderBlockWeight.convert_vector_value(A, B, vector[vector_i].strip())
ratio = ratios.pop(0)
if inverse:
populated_ratio = 1 - ratio
else:
populated_ratio = ratio
populated_vector_list.append(LoraLoaderBlockWeight.norm_value(populated_ratio))
vector_i += 1
else:
if len(ratios) > 0:
ratio = ratios.pop(0)
else:
pass # use last used ratio if no more user specified ratio is given
if inverse:
populated_ratio = 1 - ratio
else:
populated_ratio = ratio
last_k_unet_num = k_unet_num
if populated_ratio != 0:
block_weights[k] = v, populated_ratio
else:
muted_weights.append(k)
# prepare base patch
ratios = LoraLoaderBlockWeight.convert_vector_value(A, B, vector[0].strip())
ratio = ratios.pop(0)
if inverse:
populated_ratio = 1 - ratio
else:
populated_ratio = ratio
populated_vector_list.insert(0, LoraLoaderBlockWeight.norm_value(populated_ratio))
for k, v, k_unet in others:
if populated_ratio != 0:
block_weights[k] = v, populated_ratio
else:
muted_weights.append(k)
populated_vector = ','.join(map(str, populated_vector_list))
return block_weights, muted_weights, populated_vector
@staticmethod
def load_lora_for_models(model, clip, lora, strength_model, strength_clip, inverse, seed, A, B, block_vector):
block_weights, muted_weights, populated_vector = LoraLoaderBlockWeight.load_lbw(model, clip, lora, inverse, seed, A, B, block_vector)
new_modelpatcher = model.clone()
new_clip = clip.clone()
muted_weights = set(muted_weights)
for k, v in block_weights.items():
weights, ratio = v
if k in muted_weights:
pass
elif 'text' in k or 'encoder' in k:
new_clip.add_patches({k: weights}, strength_clip * ratio)
else:
new_modelpatcher.add_patches({k: weights}, strength_model * ratio)
return new_modelpatcher, new_clip, populated_vector
def doit(self, model, clip, lora_name, strength_model, strength_clip, inverse, seed, A, B, preset, block_vector, bypass=False, category_filter=None):
if strength_model == 0 and strength_clip == 0 or bypass:
return model, clip, ""
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = None
if self.loaded_lora is not None:
if self.loaded_lora[0] == lora_path:
lora = self.loaded_lora[1]
else:
temp = self.loaded_lora
self.loaded_lora = None
del temp
if lora is None:
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
self.loaded_lora = (lora_path, lora)
model_lora, clip_lora, populated_vector = LoraLoaderBlockWeight.load_lora_for_models(model, clip, lora, strength_model, strength_clip, inverse, seed, A, B, block_vector)
return model_lora, clip_lora, populated_vector
class ApplyLBW:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"clip": ("CLIP", ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lbw_model": ("LBW_MODEL",),
}}
RETURN_TYPES = ("MODEL", "CLIP")
FUNCTION = "doit"
CATEGORY = "InspirePack/LoraBlockWeight"
DESCRIPTION = "Apply LBW_MODEL to MODEL and CLIP"
@staticmethod
def doit(model, clip, strength_model, strength_clip, lbw_model):
block_weights = lbw_model['blocks']
muted_weights = lbw_model['muted']
new_modelpatcher = model.clone()
new_clip = clip.clone()
muted_weights = set(muted_weights)
for k, v in block_weights.items():
weights, ratio = v
if k in muted_weights:
pass
elif 'text' in k or 'encoder' in k:
new_clip.add_patches({k: weights}, strength_clip * ratio)
else:
new_modelpatcher.add_patches({k: weights}, strength_model * ratio)
return new_modelpatcher, new_clip
class XY_Capsule_LoraBlockWeight:
def __init__(self, x, y, target_vector, label, storage, params):
self.x = x
self.y = y
self.target_vector = target_vector
self.reference_vector = None
self.label = label
self.storage = storage
self.another_capsule = None
self.params = params
def set_reference_vector(self, vector):
self.reference_vector = vector
def set_x_capsule(self, capsule):
self.another_capsule = capsule
def set_result(self, image, latent):
if self.another_capsule is not None:
print(f"XY_Capsule_LoraBlockWeight: ({self.another_capsule.x, self.y}) is processed.")
self.storage[(self.another_capsule.x, self.y)] = image
else:
print(f"XY_Capsule_LoraBlockWeight: ({self.x, self.y}) is processed.")
def patch_model(self, model, clip):
lora_name, strength_model, strength_clip, inverse, block_vectors, seed, A, B, heatmap_palette, heatmap_alpha, heatmap_strength, xyplot_mode = self.params
try:
if self.y == 0:
target_vector = self.another_capsule.target_vector if self.another_capsule else self.target_vector
model, clip, _ = LoraLoaderBlockWeight().doit(model, clip, lora_name, strength_model, strength_clip, inverse,
seed, A, B, "", target_vector)
elif self.y == 1:
reference_vector = self.another_capsule.reference_vector if self.another_capsule else self.reference_vector
model, clip, _ = LoraLoaderBlockWeight().doit(model, clip, lora_name, strength_model, strength_clip, inverse,
seed, A, B, "", reference_vector)
except:
self.storage[(self.another_capsule.x, self.y)] = "fail"
pass
return model, clip
def pre_define_model(self, model, clip, vae):
if self.y < 2:
model, clip = self.patch_model(model, clip)
return model, clip, vae
def get_result(self, model, clip, vae):
_, _, _, _, _, _, _, _, heatmap_palette, heatmap_alpha, heatmap_strength, xyplot_mode = self.params
if self.y < 2:
return None
if self.y == 2:
# diff
weighted_image = self.storage[(self.another_capsule.x, 0)]
reference_image = self.storage[(self.another_capsule.x, 1)]
if weighted_image == "fail" or reference_image == "fail":
image = "fail"
else:
image = torch.abs(weighted_image - reference_image)
self.storage[(self.another_capsule.x, self.y)] = image
elif self.y == 3:
import matplotlib.cm as cm
# heatmap
image = self.storage[(self.another_capsule.x, 0)]
if image == "fail":
image = utils.empty_pil_tensor(8,8)
latent = utils.empty_latent()
return image, latent
else:
image = image.clone()
diff_image = torch.abs(self.storage[(self.another_capsule.x, 2)])
heatmap = torch.sum(diff_image, dim=3, keepdim=True)
min_val = torch.min(heatmap)
max_val = torch.max(heatmap)
heatmap = (heatmap - min_val) / (max_val - min_val)
heatmap *= heatmap_strength
# viridis / magma / plasma / inferno / cividis
if heatmap_palette == "magma":
colormap = cm.magma
elif heatmap_palette == "plasma":
colormap = cm.plasma
elif heatmap_palette == "inferno":
colormap = cm.inferno
elif heatmap_palette == "cividis":
colormap = cm.cividis
else:
# default: viridis
colormap = cm.viridis
heatmap = torch.from_numpy(colormap(heatmap.squeeze())).unsqueeze(0)
heatmap = heatmap[..., :3]
image = heatmap_alpha * heatmap + (1 - heatmap_alpha) * image
latent = nodes.VAEEncode().encode(vae, image)[0]
return image, latent
def getLabel(self):
return self.label
def load_preset_dict():
preset = ["Preset"] # 20
preset += load_lbw_preset("lbw-preset.txt")
preset += load_lbw_preset("lbw-preset.custom.txt")
dict = {}
for x in preset:
if not x.startswith('@'):
item = x.split(':')
if len(item) > 1:
dict[item[0]] = item[1]
return dict
class XYInput_LoraBlockWeight:
@staticmethod
def resolve_vector_string(vector_string, preset_dict):
vector_string = vector_string.strip()
if vector_string in preset_dict:
return vector_string, preset_dict[vector_string]
vector_infos = vector_string.split(':')
if len(vector_infos) > 1:
return vector_infos[0], vector_infos[1]
elif len(vector_infos) > 0:
return vector_infos[0], vector_infos[0]
else:
return None, None
@classmethod
def INPUT_TYPES(cls):
preset = ["Preset"] # 20
preset += load_lbw_preset("lbw-preset.txt")
preset += load_lbw_preset("lbw-preset.custom.txt")
default_vectors = "SD-NONE/SD-ALL\nSD-ALL/SD-ALL\nSD-INS/SD-ALL\nSD-IND/SD-ALL\nSD-INALL/SD-ALL\nSD-MIDD/SD-ALL\nSD-MIDD0.2/SD-ALL\nSD-MIDD0.8/SD-ALL\nSD-MOUT/SD-ALL\nSD-OUTD/SD-ALL\nSD-OUTS/SD-ALL\nSD-OUTALL/SD-ALL"
lora_names = folder_paths.get_filename_list("loras")
lora_dirs = [os.path.dirname(name) for name in lora_names]
lora_dirs = ["All"] + list(set(lora_dirs))
return {"required": {
"category_filter": (lora_dirs, ),
"lora_name": (lora_names, ),
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"inverse": ("BOOLEAN", {"default": False, "label_on": "True", "label_off": "False"}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"A": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"B": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"preset": (preset,),
"block_vectors": ("STRING", {"multiline": True, "default": default_vectors, "placeholder": "{target vector}/{reference vector}", "pysssss.autocomplete": False}),
"heatmap_palette": (["viridis", "magma", "plasma", "inferno", "cividis"], ),
"heatmap_alpha": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}),
"heatmap_strength": ("FLOAT", {"default": 1.5, "min": 0.0, "max": 10.0, "step": 0.01}),
"xyplot_mode": (["Simple", "Diff", "Diff+Heatmap"],),
}}
RETURN_TYPES = ("XY", "XY")
RETURN_NAMES = ("X (vectors)", "Y (effect_compares)")
FUNCTION = "doit"
CATEGORY = "InspirePack/LoraBlockWeight"
def doit(self, lora_name, strength_model, strength_clip, inverse, seed, A, B, preset, block_vectors, heatmap_palette, heatmap_alpha, heatmap_strength, xyplot_mode, category_filter=None):
xy_type = "XY_Capsule"
preset_dict = load_preset_dict()
common_params = lora_name, strength_model, strength_clip, inverse, block_vectors, seed, A, B, heatmap_palette, heatmap_alpha, heatmap_strength, xyplot_mode
storage = {}
x_values = []
x_idx = 0
for block_vector in block_vectors.split("\n"):
if block_vector == "":
continue
item = block_vector.split('/')
if len(item) > 0:
target_vector = item[0].strip()
ref_vector = item[1].strip() if len(item) > 1 else ''
x_item = None
label, block_vector = XYInput_LoraBlockWeight.resolve_vector_string(target_vector, preset_dict)
_, ref_block_vector = XYInput_LoraBlockWeight.resolve_vector_string(ref_vector, preset_dict)
if label is not None:
x_item = XY_Capsule_LoraBlockWeight(x_idx, 0, block_vector, label, storage, common_params)
x_idx += 1
if x_item is not None and ref_block_vector is not None:
x_item.set_reference_vector(ref_block_vector)
if x_item is not None:
x_values.append(x_item)
if xyplot_mode == "Simple":
y_values = [XY_Capsule_LoraBlockWeight(0, 0, '', 'target', storage, common_params)]
elif xyplot_mode == "Diff":
y_values = [XY_Capsule_LoraBlockWeight(0, 0, '', 'target', storage, common_params),
XY_Capsule_LoraBlockWeight(0, 1, '', 'reference', storage, common_params),
XY_Capsule_LoraBlockWeight(0, 2, '', 'diff', storage, common_params)]
else:
y_values = [XY_Capsule_LoraBlockWeight(0, 0, '', 'target', storage, common_params),
XY_Capsule_LoraBlockWeight(0, 1, '', 'reference', storage, common_params),
XY_Capsule_LoraBlockWeight(0, 2, '', 'diff', storage, common_params),
XY_Capsule_LoraBlockWeight(0, 3, '', 'heatmap', storage, common_params)]
return (xy_type, x_values), (xy_type, y_values),
class LoraBlockInfo:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"clip": ("CLIP", ),
"lora_name": (folder_paths.get_filename_list("loras"), ),
"block_info": ("STRING", {"multiline": True}),
},
"hidden": {"unique_id": "UNIQUE_ID"},
}
CATEGORY = "InspirePack/LoraBlockWeight"
OUTPUT_NODE = True
RETURN_TYPES = ()
FUNCTION = "doit"
@staticmethod
def extract_info(model, clip, lora):
key_map = comfy.lora.model_lora_keys_unet(model.model)
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
loaded = comfy.lora.load_lora(lora, key_map)
def parse_unet_num(s):
if s[1] == '.':
return int(s[0])
else:
return int(s)
input_block_count = set()
input_blocks = []
input_blocks_map = {}
middle_block_count = set()
middle_blocks = []
middle_blocks_map = {}
output_block_count = set()
output_blocks = []
output_blocks_map = {}
text_block_count1 = set()
text_blocks1 = []
text_blocks_map1 = {}
text_block_count2 = set()
text_blocks2 = []
text_blocks_map2 = {}
double_block_count = set()
double_blocks = []
double_blocks_map = {}
single_block_count = set()
single_blocks = []
single_blocks_map = {}
others = []
for key, v in loaded.items():
if isinstance(key, tuple):
k = key[0]
else:
k = key
k_unet = k[len("diffusion_model."):]
if k_unet.startswith("input_blocks."):
k_unet_num = k_unet[len("input_blocks."):len("input_blocks.")+2]
k_unet_int = parse_unet_num(k_unet_num)
input_block_count.add(k_unet_int)
input_blocks.append(k_unet)
if k_unet_int in input_blocks_map:
input_blocks_map[k_unet_int].append(k_unet)
else:
input_blocks_map[k_unet_int] = [k_unet]
elif k_unet.startswith("middle_block."):
k_unet_num = k_unet[len("middle_block."):len("middle_block.")+2]
k_unet_int = parse_unet_num(k_unet_num)
middle_block_count.add(k_unet_int)
middle_blocks.append(k_unet)
if k_unet_int in middle_blocks_map:
middle_blocks_map[k_unet_int].append(k_unet)
else:
middle_blocks_map[k_unet_int] = [k_unet]
elif k_unet.startswith("output_blocks."):
k_unet_num = k_unet[len("output_blocks."):len("output_blocks.")+2]
k_unet_int = parse_unet_num(k_unet_num)
output_block_count.add(k_unet_int)
output_blocks.append(k_unet)
if k_unet_int in output_blocks_map:
output_blocks_map[k_unet_int].append(k_unet)
else:
output_blocks_map[k_unet_int] = [k_unet]
elif k_unet.startswith("double_blocks."):
k_unet_num = k_unet[len("double_blocks."):len("double_blocks.") + 2]
k_unet_int = parse_unet_num(k_unet_num)
double_block_count.add(k_unet_int)
double_blocks.append(k_unet)
if k_unet_int in double_blocks_map:
double_blocks_map[k_unet_int].append(k_unet)
else:
double_blocks_map[k_unet_int] = [k_unet]
elif k_unet.startswith("single_blocks."):
k_unet_num = k_unet[len("single_blocks."):len("single_blocks.") + 2]
k_unet_int = parse_unet_num(k_unet_num)
single_block_count.add(k_unet_int)
single_blocks.append(k_unet)
if k_unet_int in single_blocks_map:
single_blocks_map[k_unet_int].append(k_unet)
else:
single_blocks_map[k_unet_int] = [k_unet]
elif k_unet.startswith("er.text_model.encoder.layers."):
k_unet_num = k_unet[len("er.text_model.encoder.layers."):len("er.text_model.encoder.layers.")+2]
k_unet_int = parse_unet_num(k_unet_num)
text_block_count1.add(k_unet_int)
text_blocks1.append(k_unet)
if k_unet_int in text_blocks_map1:
text_blocks_map1[k_unet_int].append(k_unet)
else:
text_blocks_map1[k_unet_int] = [k_unet]
elif k_unet.startswith("r.encoder.block."):
k_unet_num = k_unet[len("r.encoder.block."):len("r.encoder.block.")+2]
k_unet_int = parse_unet_num(k_unet_num)
text_block_count2.add(k_unet_int)
text_blocks2.append(k_unet)
if k_unet_int in text_blocks_map2:
text_blocks_map2[k_unet_int].append(k_unet)
else:
text_blocks_map2[k_unet_int] = [k_unet]
else:
others.append(k_unet)
text = ""
input_blocks = sorted(input_blocks)
middle_blocks = sorted(middle_blocks)
output_blocks = sorted(output_blocks)
double_blocks = sorted(double_blocks)
single_blocks = sorted(single_blocks)
others = sorted(others)
if len(input_block_count) > 0:
text += f"\n-------[Input blocks] ({len(input_block_count)}, Subs={len(input_blocks)})-------\n"
input_keys = sorted(input_blocks_map.keys())
for x in input_keys:
text += f" IN{x}: {len(input_blocks_map[x])}\n"
if len(middle_block_count) > 0:
text += f"\n-------[Middle blocks] ({len(middle_block_count)}, Subs={len(middle_blocks)})-------\n"
middle_keys = sorted(middle_blocks_map.keys())
for x in middle_keys:
text += f" MID{x}: {len(middle_blocks_map[x])}\n"
if len(output_block_count) > 0:
text += f"\n-------[Output blocks] ({len(output_block_count)}, Subs={len(output_blocks)})-------\n"
output_keys = sorted(output_blocks_map.keys())
for x in output_keys:
text += f" OUT{x}: {len(output_blocks_map[x])}\n"
if len(double_block_count) > 0:
text += f"\n-------[Double blocks(MMDiT)] ({len(double_block_count)}, Subs={len(double_blocks)})-------\n"
double_keys = sorted(double_blocks_map.keys())
for x in double_keys:
text += f" DOUBLE{x}: {len(double_blocks_map[x])}\n"
if len(single_block_count) > 0:
text += f"\n-------[Single blocks(DiT)] ({len(single_block_count)}, Subs={len(single_blocks)})-------\n"
single_keys = sorted(single_blocks_map.keys())
for x in single_keys:
text += f" SINGLE{x}: {len(single_blocks_map[x])}\n"
text += f"\n-------[Base blocks] ({len(text_block_count1) + len(text_block_count2) + len(others)}, Subs={len(text_blocks1) + len(text_blocks2) + len(others)})-------\n"
text_keys1 = sorted(text_blocks_map1.keys())
for x in text_keys1:
text += f" TXT_ENC{x}: {len(text_blocks_map1[x])}\n"
text_keys2 = sorted(text_blocks_map2.keys())
for x in text_keys2:
text += f" TXT_ENC{x} [B]: {len(text_blocks_map2[x])}\n"
for x in others:
text += f" {x}\n"
return text
def doit(self, model, clip, lora_name, block_info, unique_id):
lora_path = folder_paths.get_full_path("loras", lora_name)
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
text = LoraBlockInfo.extract_info(model, clip, lora)
PromptServer.instance.send_sync("inspire-node-feedback", {"node_id": unique_id, "widget_name": "block_info", "type": "text", "data": text})
return {}
class LoadLBW:
@classmethod
def INPUT_TYPES(s):
files = folder_paths.get_filename_list('lbw_models')
return {"required": {
"lbw_model": [sorted(files), ]},
}
RETURN_TYPES = ("LBW_MODEL",)
FUNCTION = "doit"
CATEGORY = "InspirePack/LoraBlockWeight"
DESCRIPTION = "Load LBW_MODEL from .lbw.safetensors file"
@staticmethod
def decode_dict(encoded_dict, tensor_dict):
original_dict = {}
def decode_value(value):
if isinstance(value, str) and value.startswith('t') and value[1:].isdigit():
return tensor_dict[value]
return value
for k, tuple_value in encoded_dict.items():
decoded_tuple = tuple(decode_value(v) for v in tuple_value[0][1])
key = ast.literal_eval(k) if isinstance(k, str) and (k.startswith('(') or k.startswith('[')) else k
original_dict[key] = ((tuple_value[0][0], decoded_tuple), tuple_value[1])
return original_dict
@staticmethod
def load(file):
tensor_dict = comfy.utils.load_torch_file(file)
with safe_open(file, framework="pt") as f:
metadata = f.metadata()
encoded_dict = json.loads(metadata.get('blocks', '{}'))
muted_blocks = ast.literal_eval(metadata.get('muted_blocks', '[]'))
decoded_dict = LoadLBW.decode_dict(encoded_dict, tensor_dict)
lbw_model = {
'blocks': decoded_dict,
'muted': muted_blocks
}
return lbw_model, metadata
def doit(self, lbw_model):
lbw_path = folder_paths.get_full_path("lbw_models", lbw_model)
lbw_model, _ = LoadLBW.load(lbw_path)
return (lbw_model,)
class SaveLBW:
def __init__(self):
self.output_dir = folder_paths.get_folder_paths('lbw_models')[-1]
@classmethod
def INPUT_TYPES(s):
return {"required": { "lbw_model": ("LBW_MODEL", ),
"filename_prefix": ("STRING", {"default": "ComfyUI"}) },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = ()
FUNCTION = "doit"
OUTPUT_NODE = True
CATEGORY = "InspirePack/LoraBlockWeight"
DESCRIPTION = "Save LBW_MODEL as a .lbw.safetensors file"
@staticmethod
def encode_dict(original_dict):
tensor_dict = {}
encoded_dict = {}
counter = 0
def generate_unique_id():
nonlocal counter
counter += 1
return f"t{counter}"
def encode_value(value):
if isinstance(value, torch.Tensor):
unique_id = generate_unique_id()
tensor_dict[unique_id] = value
return unique_id
return value
for k, tuple_value in original_dict.items():
encoded_tuple = tuple(encode_value(v) for v in tuple_value[0][1])
encoded_dict[str(k)] = (tuple_value[0][0], encoded_tuple), tuple_value[1]
return encoded_dict, tensor_dict
@staticmethod
def save(lbw_model, file, metadata):
metadata['format'] = 'Inspire LBW 1.0'
weighted_blocks = lbw_model['blocks']
metadata['muted_blocks'] = str(lbw_model['muted'])
encoded_dict, tensor_dict = SaveLBW.encode_dict(weighted_blocks)
metadata['blocks'] = json.dumps(encoded_dict)
comfy.utils.save_torch_file(tensor_dict, file, metadata=metadata)
def doit(self, lbw_model, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# support save metadata for lbw sharing
prompt_info = ""
if prompt is not None:
prompt_info = json.dumps(prompt)
metadata = {}
if not args.disable_metadata:
metadata = {"prompt": prompt_info}
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata[x] = json.dumps(extra_pnginfo[x])
file = f"{filename}_{counter:05}_.lbw.safetensors"
results = list()
results.append({
"filename": file,
"subfolder": subfolder,
"type": "output"
})
file = os.path.join(full_output_folder, file)
SaveLBW.save(lbw_model, file, metadata)
return {}
NODE_CLASS_MAPPINGS = {
"XY Input: Lora Block Weight //Inspire": XYInput_LoraBlockWeight,
"LoraLoaderBlockWeight //Inspire": LoraLoaderBlockWeight,
"LoraBlockInfo //Inspire": LoraBlockInfo,
"MakeLBW //Inspire": MakeLBW,
"ApplyLBW //Inspire": ApplyLBW,
"SaveLBW //Inspire": SaveLBW,
"LoadLBW //Inspire": LoadLBW,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"XY Input: Lora Block Weight //Inspire": "XY Input: LoRA Block Weight",
"LoraLoaderBlockWeight //Inspire": "LoRA Loader (Block Weight)",
"LoraBlockInfo //Inspire": "LoRA Block Info",
"MakeLBW //Inspire": "Make LoRA Block Weight",
"ApplyLBW //Inspire": "Apply LoRA Block Weight",
"SaveLBW //Inspire": "Save LoRA Block Weight",
"LoadLBW //Inspire": "Load LoRA Block Weight",
}