Spaces:
Runtime error
Runtime error
Revert "Florence2ModelLoader loadmodel"
Browse filesThis reverts commit 8e59d75004da26d5e68c7a9beddfd7f891b26515.
custom_nodes/comfyui-florence2/nodes.py
CHANGED
@@ -198,65 +198,6 @@ class DownloadAndLoadFlorence2Lora:
|
|
198 |
|
199 |
class Florence2ModelLoader:
|
200 |
|
201 |
-
# 用下面的函数完整替换掉旧的 loadmodel 函数
|
202 |
-
def loadmodel(self, model, precision, attention, lora=None, convert_to_safetensors=False):
|
203 |
-
"""
|
204 |
-
一个为 Hugging Face Spaces ZeroGPU 环境重写的、稳健的 loadmodel 函数。
|
205 |
-
它完全移除了手动的设备管理,并使用 accelerate 库进行智能调度。
|
206 |
-
"""
|
207 |
-
# 1. 彻底删除所有手动的设备管理
|
208 |
-
# device = mm.get_torch_device() <-- 已删除
|
209 |
-
# offload_device = mm.unet_offload_device() <-- 已删除
|
210 |
-
|
211 |
-
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
212 |
-
|
213 |
-
model_path = self.model_paths.get(model)
|
214 |
-
print(f"Loading model from {model_path} using the correct Spaces method (device_map='auto').")
|
215 |
-
|
216 |
-
# 2. 保留 safetensors 转换逻辑,但修复 map_location
|
217 |
-
if convert_to_safetensors:
|
218 |
-
model_weight_path = os.path.join(model_path, 'pytorch_model.bin')
|
219 |
-
safetensors_weight_path = os.path.join(model_path, 'model.safetensors')
|
220 |
-
if os.path.exists(model_weight_path) and not os.path.exists(safetensors_weight_path):
|
221 |
-
print(f"Converting {model_weight_path} to {safetensors_weight_path}")
|
222 |
-
# 使用 "cpu" 作为 map_location 确保在任何环境下都安全
|
223 |
-
sd = torch.load(model_weight_path, map_location="cpu")
|
224 |
-
save_file(sd, safetensors_weight_path)
|
225 |
-
if os.path.exists(safetensors_weight_path):
|
226 |
-
os.remove(model_weight_path)
|
227 |
-
print(f"Conversion successful. Original file deleted.")
|
228 |
-
|
229 |
-
# 3. 统一使用 from_pretrained 和 device_map="auto" 加载模型
|
230 |
-
# 删除所有 .to(device) 调用
|
231 |
-
|
232 |
-
# 假设 Florence2ForConditionalGeneration 是你的主要模型类
|
233 |
-
from .modeling_florence2 import Florence2ForConditionalGeneration
|
234 |
-
|
235 |
-
print("Loading model with device_map='auto'...")
|
236 |
-
model_instance = Florence2ForConditionalGeneration.from_pretrained(
|
237 |
-
model_path,
|
238 |
-
attn_implementation=attention,
|
239 |
-
torch_dtype=dtype,
|
240 |
-
device_map="auto",
|
241 |
-
low_cpu_mem_usage=True # 强烈推荐,防止CPU内存溢出
|
242 |
-
)
|
243 |
-
print("Model loaded successfully onto meta device / CPU.")
|
244 |
-
|
245 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
246 |
-
|
247 |
-
if lora is not None:
|
248 |
-
from peft import PeftModel
|
249 |
-
# PEFT 会自动处理设备,无需改动
|
250 |
-
model_instance = PeftModel.from_pretrained(model_instance, lora, trust_remote_code=True)
|
251 |
-
|
252 |
-
florence2_model = {
|
253 |
-
'model': model_instance,
|
254 |
-
'processor': processor,
|
255 |
-
'dtype': dtype
|
256 |
-
}
|
257 |
-
|
258 |
-
return (florence2_model,) # 保持返回元组的格式
|
259 |
-
|
260 |
@classmethod
|
261 |
def INPUT_TYPES(s):
|
262 |
all_llm_paths = folder_paths.get_folder_paths("LLM")
|
@@ -282,50 +223,50 @@ class Florence2ModelLoader:
|
|
282 |
FUNCTION = "loadmodel"
|
283 |
CATEGORY = "Florence2"
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
|
328 |
-
|
329 |
|
330 |
class Florence2Run:
|
331 |
@classmethod
|
|
|
198 |
|
199 |
class Florence2ModelLoader:
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
@classmethod
|
202 |
def INPUT_TYPES(s):
|
203 |
all_llm_paths = folder_paths.get_folder_paths("LLM")
|
|
|
223 |
FUNCTION = "loadmodel"
|
224 |
CATEGORY = "Florence2"
|
225 |
|
226 |
+
def loadmodel(self, model, precision, attention, lora=None, convert_to_safetensors=False):
|
227 |
+
device = mm.get_torch_device()
|
228 |
+
offload_device = mm.unet_offload_device()
|
229 |
+
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision]
|
230 |
+
|
231 |
+
model_path = Florence2ModelLoader.model_paths.get(model)
|
232 |
+
print(f"Loading model from {model_path}")
|
233 |
+
print(f"Florence2 using {attention} for attention")
|
234 |
+
if convert_to_safetensors:
|
235 |
+
model_weight_path = os.path.join(model_path, 'pytorch_model.bin')
|
236 |
+
if os.path.exists(model_weight_path):
|
237 |
+
safetensors_weight_path = os.path.join(model_path, 'model.safetensors')
|
238 |
+
print(f"Converting {model_weight_path} to {safetensors_weight_path}")
|
239 |
+
if not os.path.exists(safetensors_weight_path):
|
240 |
+
sd = torch.load(model_weight_path, map_location=offload_device)
|
241 |
+
sd_new = {}
|
242 |
+
for k, v in sd.items():
|
243 |
+
sd_new[k] = v.clone()
|
244 |
+
save_file(sd_new, safetensors_weight_path)
|
245 |
+
if os.path.exists(safetensors_weight_path):
|
246 |
+
print(f"Conversion successful. Deleting original file: {model_weight_path}")
|
247 |
+
os.remove(model_weight_path)
|
248 |
+
print(f"Original {model_weight_path} file deleted.")
|
249 |
+
|
250 |
+
if transformers.__version__ < '4.51.0':
|
251 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports): #workaround for unnecessary flash_attn requirement
|
252 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, attn_implementation=attention, torch_dtype=dtype,trust_remote_code=True).to(offload_device)
|
253 |
+
else:
|
254 |
+
from .modeling_florence2 import Florence2ForConditionalGeneration
|
255 |
+
model = Florence2ForConditionalGeneration.from_pretrained(model_path, attn_implementation=attention, torch_dtype=dtype).to(offload_device)
|
256 |
+
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
257 |
+
|
258 |
+
if lora is not None:
|
259 |
+
from peft import PeftModel
|
260 |
+
adapter_name = lora
|
261 |
+
model = PeftModel.from_pretrained(model, adapter_name, trust_remote_code=True)
|
262 |
|
263 |
+
florence2_model = {
|
264 |
+
'model': model,
|
265 |
+
'processor': processor,
|
266 |
+
'dtype': dtype
|
267 |
+
}
|
268 |
|
269 |
+
return (florence2_model,)
|
270 |
|
271 |
class Florence2Run:
|
272 |
@classmethod
|