from .imagefunc import * NODE_NAME = 'AddGrain' class AddGrain: def __init__(self): pass @classmethod def INPUT_TYPES(self): return { "required": { "image": ("IMAGE", ), # "grain_power": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": 0.01}), "grain_scale": ("FLOAT", {"default": 1, "min": 0.1, "max": 10, "step": 0.1}), "grain_sat": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}), }, "optional": { } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("image",) FUNCTION = 'add_grain' CATEGORY = '😺dzNodes/LayerFilter' def add_grain(self, image, grain_power, grain_scale, grain_sat): ret_images = [] for i in image: _canvas = tensor2pil(torch.unsqueeze(i, 0)).convert('RGB') _canvas = image_add_grain(_canvas, grain_scale, grain_power, grain_sat, toe=0, seed=int(time.time())) ret_images.append(pil2tensor(_canvas)) log(f"{NODE_NAME} Processed {len(ret_images)} image(s).", message_type='finish') return (torch.cat(ret_images, dim=0),) NODE_CLASS_MAPPINGS = { "LayerFilter: AddGrain": AddGrain } NODE_DISPLAY_NAME_MAPPINGS = { "LayerFilter: AddGrain": "LayerFilter: Add Grain" }