from .imagefunc import * NODE_NAME = 'BiRefNetUltra' class BiRefNetUltra: @classmethod def INPUT_TYPES(cls): method_list = ['VITMatte', 'VITMatte(local)', 'PyMatting', 'GuidedFilter', ] device_list = ['cuda','cpu'] return { "required": { "image": ("IMAGE",), "detail_method": (method_list,), "detail_erode": ("INT", {"default": 6, "min": 1, "max": 255, "step": 1}), "detail_dilate": ("INT", {"default": 6, "min": 1, "max": 255, "step": 1}), "black_point": ("FLOAT", {"default": 0.01, "min": 0.01, "max": 0.98, "step": 0.01, "display": "slider"}), "white_point": ("FLOAT", {"default": 0.99, "min": 0.02, "max": 0.99, "step": 0.01, "display": "slider"}), "process_detail": ("BOOLEAN", {"default": True}), "device": (device_list,), "max_megapixels": ("FLOAT", {"default": 2.0, "min": 1, "max": 999, "step": 0.1}), }, "optional": { } } RETURN_TYPES = ("IMAGE", "MASK", ) RETURN_NAMES = ("image", "mask", ) FUNCTION = "birefnet_ultra" CATEGORY = '😺dzNodes/LayerMask' def birefnet_ultra(self, image, detail_method, detail_erode, detail_dilate, black_point, white_point, process_detail, device, max_megapixels): ret_images = [] ret_masks = [] if detail_method == 'VITMatte(local)': local_files_only = True else: local_files_only = False from .birefnet_legacy import BiRefNetRemoveBackground birefnetrmbg = BiRefNetRemoveBackground() for i in image: i = torch.unsqueeze(i, 0) orig_image = tensor2pil(i).convert('RGB') _mask = birefnetrmbg.generate_mask(orig_image) _mask = image2mask(_mask) detail_range = detail_erode + detail_dilate if process_detail: if detail_method == 'GuidedFilter': _mask = guided_filter_alpha(i, _mask, detail_range // 6 + 1) _mask = tensor2pil(histogram_remap(_mask, black_point, white_point)) elif detail_method == 'PyMatting': _mask = tensor2pil(mask_edge_detail(i, _mask, detail_range // 8 + 1, black_point, white_point)) else: _trimap = generate_VITMatte_trimap(_mask, detail_erode, detail_dilate) _mask = generate_VITMatte(orig_image, _trimap, local_files_only=local_files_only, device=device, max_megapixels=max_megapixels) _mask = tensor2pil(histogram_remap(pil2tensor(_mask), black_point, white_point)) else: _mask = tensor2pil(_mask) ret_image = RGB2RGBA(orig_image, _mask.convert('L')) ret_images.append(pil2tensor(ret_image)) ret_masks.append(image2mask(_mask)) log(f"{NODE_NAME} Processed {len(ret_masks)} image(s).", message_type='finish') return (torch.cat(ret_images, dim=0), torch.cat(ret_masks, dim=0),) NODE_CLASS_MAPPINGS = { "LayerMask: BiRefNetUltra": BiRefNetUltra, } NODE_DISPLAY_NAME_MAPPINGS = { "LayerMask: BiRefNetUltra": "LayerMask: BiRefNetUltra", }