from .imagefunc import * NODE_NAME = 'CheckMaskV2' # 检查mask是否有效,如果mask面积少于指定比例则判为无效mask class CheckMaskV2: def __init__(self): pass @classmethod def INPUT_TYPES(self): method_list = ['simple', 'detect_percent'] blank_mask_list = ['white', 'black'] return { "required": { "mask": ("MASK",), # "method": (method_list,), # "white_point": ("INT", {"default": 1, "min": 1, "max": 254, "step": 1}), # 用于判断mask是否有效的白点值,高于此值被计入有效 "area_percent": ("FLOAT", {"default": 0.01, "min": 0, "max": 100, "step": 0.01}), # 区域百分比,低于此则mask判定无效 }, "optional": { # } } RETURN_TYPES = ("BOOLEAN",) RETURN_NAMES = ('bool',) FUNCTION = 'check_mask_v2' CATEGORY = '😺dzNodes/LayerUtility' def check_mask_v2(self, mask, method, white_point, area_percent,): if mask.dim() == 2: mask = torch.unsqueeze(mask, 0) tensor_mask = mask[0] print(f"tensor_mask={tensor_mask},shape is {tensor_mask.shape}") pil_mask = tensor2pil(tensor_mask) if pil_mask.width * pil_mask.height > 262144: target_width = 512 target_height = int(target_width * pil_mask.height / pil_mask.width) pil_mask = pil_mask.resize((target_width, target_height), Image.LANCZOS) ret_bool = False if method == 'simple': ret_bool = is_valid_mask(tensor_mask) else: ret_bool = mask_white_area(pil_mask, white_point) * 100 > area_percent return (ret_bool,) NODE_CLASS_MAPPINGS = { "LayerUtility: CheckMaskV2": CheckMaskV2 } NODE_DISPLAY_NAME_MAPPINGS = { "LayerUtility: CheckMaskV2": "LayerUtility: Check Mask V2" }