import cv2 import numpy as np def generate_blurred_images(image, blur_strength, steps, focus_spread=1): blurred_images = [] for step in range(1, steps + 1): # Adjust the curve based on the curve_weight blur_factor = (step / steps) ** focus_spread * blur_strength blur_size = max(1, int(blur_factor)) blur_size = blur_size if blur_size % 2 == 1 else blur_size + 1 # Ensure blur_size is odd # Apply Gaussian Blur blurred_image = cv2.GaussianBlur(image, (blur_size, blur_size), 0) blurred_images.append(blurred_image) return blurred_images def apply_blurred_images(image, blurred_images, mask): steps = len(blurred_images) # Calculate the number of steps based on the blurred images provided final_image = np.zeros_like(image) step_size = 1.0 / steps for i, blurred_image in enumerate(blurred_images): # Calculate the mask for the current step current_mask = np.clip((mask - i * step_size) * steps, 0, 1) next_mask = np.clip((mask - (i + 1) * step_size) * steps, 0, 1) blend_mask = current_mask - next_mask # Apply the blend mask final_image += blend_mask[:, :, np.newaxis] * blurred_image # Ensure no division by zero; add the original image for areas without blurring final_image += (1 - np.clip(mask * steps, 0, 1))[:, :, np.newaxis] * image return final_image