Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from PIL import Image
|
| 4 |
+
from ultralyticsplus import YOLO, render_result
|
| 5 |
+
import cv2
|
| 6 |
+
import numpy as np
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
|
| 9 |
+
model = YOLO('best (1).pt')
|
| 10 |
+
model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
|
| 11 |
+
name = ['grenade','knife','pistol','rifle']
|
| 12 |
+
|
| 13 |
+
# for i, r in enumerate(results):
|
| 14 |
+
|
| 15 |
+
# # Plot results image
|
| 16 |
+
# im_bgr = r.plot()
|
| 17 |
+
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
|
| 18 |
+
|
| 19 |
+
def response(image):
|
| 20 |
+
print(image)
|
| 21 |
+
results = model(image)
|
| 22 |
+
text = ""
|
| 23 |
+
name_weap = ""
|
| 24 |
+
|
| 25 |
+
for r in results:
|
| 26 |
+
conf = np.array(r.boxes.conf)
|
| 27 |
+
cls = np.array(r.boxes.cls)
|
| 28 |
+
cls = cls.astype(int)
|
| 29 |
+
xywh = np.array(r.boxes.xywh)
|
| 30 |
+
xywh = xywh.astype(int)
|
| 31 |
+
|
| 32 |
+
for con, cl, xy in zip(conf, cls, xywh):
|
| 33 |
+
cone = con.astype(float)
|
| 34 |
+
conef = round(cone,3)
|
| 35 |
+
conef = conef * 100
|
| 36 |
+
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
|
| 37 |
+
|
| 38 |
+
if cl == 0:
|
| 39 |
+
name_weap += name[cl] + '\n'
|
| 40 |
+
elif cl == 1:
|
| 41 |
+
name_weap += name[cl] + '\n'
|
| 42 |
+
elif cl == 2:
|
| 43 |
+
out = model2(image)
|
| 44 |
+
name_weap += out[0]["label"] + '\n'
|
| 45 |
+
elif cl == 3:
|
| 46 |
+
out = model2(image)
|
| 47 |
+
name_weap += out[0]["label"] + '\n'
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# im_rgb = Image.fromarray(im_rgb)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
return name_weap, text
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
|
| 58 |
+
|
| 59 |
+
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
|
| 60 |
+
|
| 61 |
+
box = results[0].boxes
|
| 62 |
+
|
| 63 |
+
render = render_result(model=model, image=image, result=results[0], rect_th = 1, text_th = 1)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
weapon_name, text_detection = response(image)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# xywh = int(results.boxes.xywh)
|
| 70 |
+
# x = xywh[0]
|
| 71 |
+
# y = xywh[1]
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
return render, text_detection, weapon_name
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
inputs = [
|
| 79 |
+
gr.Image(type="filepath", label="Input Image"),
|
| 80 |
+
gr.Slider(minimum=320, maximum=1280, value=640,
|
| 81 |
+
step=32, label="Image Size"),
|
| 82 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
|
| 83 |
+
step=0.05, label="Confidence Threshold"),
|
| 84 |
+
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
|
| 85 |
+
step=0.05, label="IOU Threshold"),
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
outputs = [gr.Image( type="filepath", label="Output Image"),
|
| 90 |
+
gr.Textbox(label="Result"),
|
| 91 |
+
gr.Textbox(label="Weapon Name")
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# examples = [['th (11).jpg', 640, 0.3, 0.6],
|
| 96 |
+
# ['th (8).jpg', 640, 0.3, 0.6],
|
| 97 |
+
# ['th (3).jpg', 640, 0.3, 0.6],
|
| 98 |
+
# ['th.jpg', 640, 0.15, 0.6]
|
| 99 |
+
# ]
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs)
|
| 105 |
+
iface.launch(debug=True)
|