Spaces:
Build error
Build error
Create metadata_fixed.py
Browse files- lab/metadata_fixed.py +148 -0
lab/metadata_fixed.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import requests
|
| 4 |
+
import chromadb
|
| 5 |
+
import pdfplumber
|
| 6 |
+
from langchain.document_loaders import PDFPlumberLoader
|
| 7 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 8 |
+
from langchain_experimental.text_splitter import SemanticChunker
|
| 9 |
+
from langchain_chroma import Chroma
|
| 10 |
+
from langchain.chains import LLMChain
|
| 11 |
+
from langchain.prompts import PromptTemplate
|
| 12 |
+
from langchain_groq import ChatGroq
|
| 13 |
+
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
| 14 |
+
|
| 15 |
+
# ----------------- Streamlit UI Setup -----------------
|
| 16 |
+
st.set_page_config(page_title="Blah", layout="centered")
|
| 17 |
+
st.title("Blah-1")
|
| 18 |
+
|
| 19 |
+
# ----------------- API Keys -----------------
|
| 20 |
+
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
| 21 |
+
os.environ["HF_TOKEN"] = st.secrets.get("HF_TOKEN", "")
|
| 22 |
+
|
| 23 |
+
# ----------------- Clear ChromaDB Cache -----------------
|
| 24 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
| 25 |
+
|
| 26 |
+
# ----------------- Initialize Session State -----------------
|
| 27 |
+
if "pdf_loaded" not in st.session_state:
|
| 28 |
+
st.session_state.pdf_loaded = False
|
| 29 |
+
if "chunked" not in st.session_state:
|
| 30 |
+
st.session_state.chunked = False
|
| 31 |
+
if "vector_created" not in st.session_state:
|
| 32 |
+
st.session_state.vector_created = False
|
| 33 |
+
if "processed_chunks" not in st.session_state:
|
| 34 |
+
st.session_state.processed_chunks = None
|
| 35 |
+
if "vector_store" not in st.session_state:
|
| 36 |
+
st.session_state.vector_store = None
|
| 37 |
+
|
| 38 |
+
# ----------------- Function to Extract PDF Title -----------------
|
| 39 |
+
def extract_pdf_title(pdf_path):
|
| 40 |
+
"""Extract title from PDF metadata or first page."""
|
| 41 |
+
try:
|
| 42 |
+
with pdfplumber.open(pdf_path) as pdf:
|
| 43 |
+
first_page = pdf.pages[0]
|
| 44 |
+
text = first_page.extract_text()
|
| 45 |
+
return text.split("\n")[0] if text else "Untitled Document"
|
| 46 |
+
except Exception as e:
|
| 47 |
+
return "Untitled Document"
|
| 48 |
+
|
| 49 |
+
# ----------------- PDF Selection (Upload or URL) -----------------
|
| 50 |
+
st.subheader("π PDF Selection")
|
| 51 |
+
pdf_source = st.radio("Choose a PDF source:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
| 52 |
+
|
| 53 |
+
if pdf_source == "Upload a PDF file":
|
| 54 |
+
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
| 55 |
+
if uploaded_file:
|
| 56 |
+
st.session_state.pdf_path = "temp.pdf"
|
| 57 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
| 58 |
+
f.write(uploaded_file.getbuffer())
|
| 59 |
+
st.session_state.pdf_loaded = False
|
| 60 |
+
st.session_state.chunked = False
|
| 61 |
+
st.session_state.vector_created = False
|
| 62 |
+
|
| 63 |
+
elif pdf_source == "Enter a PDF URL":
|
| 64 |
+
pdf_url = st.text_input("Enter PDF URL:")
|
| 65 |
+
if pdf_url and not st.session_state.pdf_loaded:
|
| 66 |
+
with st.spinner("π Downloading PDF..."):
|
| 67 |
+
try:
|
| 68 |
+
response = requests.get(pdf_url)
|
| 69 |
+
if response.status_code == 200:
|
| 70 |
+
st.session_state.pdf_path = "temp.pdf"
|
| 71 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
| 72 |
+
f.write(response.content)
|
| 73 |
+
st.session_state.pdf_loaded = False
|
| 74 |
+
st.session_state.chunked = False
|
| 75 |
+
st.session_state.vector_created = False
|
| 76 |
+
st.success("β
PDF Downloaded Successfully!")
|
| 77 |
+
else:
|
| 78 |
+
st.error("β Failed to download PDF. Check the URL.")
|
| 79 |
+
except Exception as e:
|
| 80 |
+
st.error(f"Error downloading PDF: {e}")
|
| 81 |
+
|
| 82 |
+
# ----------------- Process PDF -----------------
|
| 83 |
+
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
| 84 |
+
with st.spinner("π Processing document... Please wait."):
|
| 85 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
| 86 |
+
docs = loader.load()
|
| 87 |
+
|
| 88 |
+
# Extract metadata
|
| 89 |
+
metadata = docs[0].metadata
|
| 90 |
+
|
| 91 |
+
# Try to get title from metadata, fallback to first page
|
| 92 |
+
title = metadata.get("Title", "").strip() if metadata.get("Title") else extract_pdf_title(st.session_state.pdf_path)
|
| 93 |
+
|
| 94 |
+
# Display Title
|
| 95 |
+
st.subheader(f"π Document Title: {title}")
|
| 96 |
+
|
| 97 |
+
# Debugging: Show metadata
|
| 98 |
+
st.json(metadata)
|
| 99 |
+
|
| 100 |
+
# Embedding Model (HF on CPU)
|
| 101 |
+
model_name = "nomic-ai/modernbert-embed-base"
|
| 102 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"})
|
| 103 |
+
|
| 104 |
+
# Prevent unnecessary re-chunking
|
| 105 |
+
if not st.session_state.chunked:
|
| 106 |
+
text_splitter = SemanticChunker(embedding_model)
|
| 107 |
+
document_chunks = text_splitter.split_documents(docs)
|
| 108 |
+
st.session_state.processed_chunks = document_chunks
|
| 109 |
+
st.session_state.chunked = True
|
| 110 |
+
|
| 111 |
+
st.session_state.pdf_loaded = True
|
| 112 |
+
st.success("β
Document processed and chunked successfully!")
|
| 113 |
+
|
| 114 |
+
# ----------------- Setup Vector Store -----------------
|
| 115 |
+
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
| 116 |
+
with st.spinner("π Initializing Vector Store..."):
|
| 117 |
+
st.session_state.vector_store = Chroma(
|
| 118 |
+
collection_name="deepseek_collection",
|
| 119 |
+
collection_metadata={"hnsw:space": "cosine"},
|
| 120 |
+
embedding_function=embedding_model
|
| 121 |
+
)
|
| 122 |
+
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
|
| 123 |
+
st.session_state.vector_created = True
|
| 124 |
+
st.success("β
Vector store initialized successfully!")
|
| 125 |
+
|
| 126 |
+
# ----------------- Query Input -----------------
|
| 127 |
+
query = st.text_input("π Ask a question about the document:")
|
| 128 |
+
|
| 129 |
+
if query:
|
| 130 |
+
with st.spinner("π Retrieving relevant context..."):
|
| 131 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
| 132 |
+
retrieved_docs = retriever.invoke(query)
|
| 133 |
+
context = [d.page_content for d in retrieved_docs]
|
| 134 |
+
st.success("β
Context retrieved successfully!")
|
| 135 |
+
|
| 136 |
+
# ----------------- Run Individual Chains Explicitly -----------------
|
| 137 |
+
context_relevancy_chain = LLMChain(llm=ChatGroq(model="deepseek-r1-distill-llama-70b"), prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
|
| 138 |
+
response_chain = LLMChain(llm=ChatGroq(model="mixtral-8x7b-32768"), prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
|
| 139 |
+
|
| 140 |
+
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
|
| 141 |
+
final_response = response_chain.invoke({"query": query, "context": context})
|
| 142 |
+
|
| 143 |
+
# ----------------- Display All Outputs -----------------
|
| 144 |
+
st.markdown("### π¦ Picked Relevant Contexts")
|
| 145 |
+
st.json(response_crisis["relevancy_response"])
|
| 146 |
+
|
| 147 |
+
st.markdown("## π₯ RAG Final Response")
|
| 148 |
+
st.write(final_response["final_response"])
|