File size: 5,696 Bytes
19a06bc
 
 
 
 
597d2bd
19a06bc
ddab86e
19a06bc
 
 
 
 
 
 
 
 
c56d469
e2a19c2
1d7ab61
a1ef31a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1f206
 
a1ef31a
 
 
 
 
 
 
 
 
f22913a
9879fa4
 
 
a1ef31a
 
 
 
 
 
 
 
3209527
a1ef31a
 
 
3209527
a1ef31a
 
3209527
 
 
a1ef31a
3209527
a1ef31a
3209527
a1ef31a
 
3209527
 
 
 
 
 
 
 
 
 
 
 
a1ef31a
 
 
 
 
 
 
3209527
 
a1ef31a
3209527
 
 
 
a1ef31a
f9d8304
 
a1ef31a
3209527
 
 
a1ef31a
3209527
a1ef31a
 
3209527
 
 
a1ef31a
 
 
 
 
3209527
 
a1ef31a
3209527
 
a1ef31a
 
f9d8304
a1ef31a
 
3209527
 
a1ef31a
 
f9d8304
a1ef31a
 
3209527
 
a1ef31a
 
 
3209527
 
 
 
a1ef31a
 
 
 
 
 
 
f9d8304
3209527
 
a1ef31a
3209527
 
 
a1ef31a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
import pandas as pd
import sqlite3
import os
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

st.title("Blah Blah App πŸš€")
st.write("Analyze datasets using natural language queries.")

# LLM Initialization
def initialize_llm(model_choice):
    groq_api_key = os.getenv("GROQ_API_KEY")
    openai_api_key = os.getenv("OPENAI_API_KEY")

    if model_choice == "llama-3.3-70b":
        if not groq_api_key:
            st.error("Groq API key is missing.")
            return None
        return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
    elif model_choice == "GPT-4o":
        if not openai_api_key:
            st.error("OpenAI API key is missing.")
            return None
        return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")

model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
llm = initialize_llm(model_choice)

# Dataset Loading 
def load_dataset_into_session():
    input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
    if input_option == "Use Hugging Face Dataset":
        dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
        if st.button("Load Dataset"):
            try:
                dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
                st.session_state.df = pd.DataFrame(dataset)
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(st.session_state.df.head())
            except Exception as e:
                st.error(f"Error: {e}")
    elif input_option == "Upload CSV File":
        uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
        if uploaded_file:
            st.session_state.df = pd.read_csv(uploaded_file)
            st.success("File uploaded successfully!")
            st.dataframe(st.session_state.df.head())

if "df" not in st.session_state:
    st.session_state.df = None
load_dataset_into_session()

# Database Initialization 
def initialize_database(df):
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "patent_data.db")
    connection = sqlite3.connect(db_path)
    df.to_sql("patents", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
    return db, temp_dir

# SQL Tools
def create_sql_tools(db):
    @tool("list_tables")
    def list_tables() -> str:
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    return list_tables, tables_schema, execute_sql

# Agent Initialization
def initialize_agents(llm, tools):
    list_tables, tables_schema, execute_sql = tools

    sql_agent = Agent(
        role="Patent Data Analyst",
        goal="Extract patent data using optimized SQL queries.",
        backstory="Expert in optimized SQL for patent databases.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql],
    )

    analyst_agent = Agent(
        role="Patent Data Analyst",
        goal="Analyze the data and produce insights.",
        backstory="Data analyst identifying trends.",
        llm=llm,
    )

    writer_agent = Agent(
        role="Patent Report Writer",
        goal="Summarize patent insights into a report.",
        backstory="Expert in clear, concise reporting.",
        llm=llm,
    )

    return sql_agent, analyst_agent, writer_agent

# Crew and Tasks Setup
def setup_crew(sql_agent, analyst_agent, writer_agent):
    extract_task = Task(
        description="Extract patents related to the query: {query}.",
        expected_output="Patent data matching the query.",
        agent=sql_agent,
    )

    analyze_task = Task(
        description="Analyze the extracted patent data.",
        expected_output="Analysis text summarizing findings.",
        agent=analyst_agent,
        context=[extract_task],
    )

    report_task = Task(
        description="Summarize analysis into a report.",
        expected_output="Markdown report of insights.",
        agent=writer_agent,
        context=[analyze_task],
    )

    return Crew(
        agents=[sql_agent, analyst_agent, writer_agent],
        tasks=[extract_task, analyze_task, report_task],
        process=Process.sequential,
        verbose=True,
    )

    # Execution Flow
if st.session_state.df is not None:
    db, temp_dir = initialize_database(st.session_state.df)
    tools = create_sql_tools(db)
    sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools)
    crew = setup_crew(sql_agent, analyst_agent, writer_agent)

    query = st.text_area("Enter Patent Analysis Query:", placeholder="e.g., 'How many patents related to Machine Learning were filed after 2016?'")
    if st.button("Submit Query"):
        with st.spinner("Processing your query..."):
            result = crew.kickoff(inputs={"query": query})
            st.markdown("### πŸ“Š Patent Analysis Report")
            st.markdown(result)
else:
    st.info("Please load a patent dataset to proceed.")