Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import sqlite3 | |
import os | |
import json | |
from pathlib import Path | |
from datetime import datetime, timezone | |
from crewai import Agent, Crew, Process, Task | |
from crewai.tools import tool | |
from langchain_groq import ChatGroq | |
from langchain.schema.output import LLMResult | |
from langchain_core.callbacks.base import BaseCallbackHandler | |
from langchain_community.tools.sql_database.tool import ( | |
InfoSQLDatabaseTool, | |
ListSQLDatabaseTool, | |
QuerySQLCheckerTool, | |
QuerySQLDataBaseTool, | |
) | |
from langchain_community.utilities.sql_database import SQLDatabase | |
from datasets import load_dataset | |
import tempfile | |
# API Key | |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "") | |
# Initialize LLM | |
class LLMCallbackHandler(BaseCallbackHandler): | |
def __init__(self, log_path: Path): | |
self.log_path = log_path | |
def on_llm_start(self, serialized, prompts, **kwargs): | |
with self.log_path.open("a", encoding="utf-8") as file: | |
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n") | |
def on_llm_end(self, response: LLMResult, **kwargs): | |
generation = response.generations[-1][-1].message.content | |
with self.log_path.open("a", encoding="utf-8") as file: | |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n") | |
llm = ChatGroq( | |
temperature=0, | |
model_name="groq/llama-3.3-70b-versatile", | |
max_tokens=200, | |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))], | |
) | |
st.title("Blah Blah App Using CrewAI π") | |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.") | |
# Initialize session state for data persistence | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
# Dataset Input | |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
if input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") | |
if st.button("Load Dataset"): | |
try: | |
with st.spinner("Loading dataset..."): | |
dataset = load_dataset(dataset_name, split="train") | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
st.dataframe(st.session_state.df.head()) | |
except Exception as e: | |
st.error(f"Error: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
if uploaded_file: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
st.dataframe(st.session_state.df.head()) | |