File size: 43,269 Bytes
ac5de5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
# dia/model.py

import os
import logging
import time
import dac  # Keep this import name
import numpy as np
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file  # <<< ADDED Import for safetensors

from .audio import audio_to_codebook, codebook_to_audio
from .config import (
    DiaConfig,
)  # Assuming this is the Pydantic config for model structure
from .layers import DiaModel, KVCache  # Assuming these are the nn.Module definitions

# --- Get a logger instance for this module ---
logger = logging.getLogger(__name__)

# Optional: Add a check after import to verify the library looks correct
# Note: We now expect 'utils' based on original code
if (
    not hasattr(dac, "utils")
    or not hasattr(dac.utils, "download")
    or not hasattr(dac, "DAC")
):
    logger.warning(
        "The imported 'dac' module does not appear to have the 'utils.download' structure expected by the original Dia code."
    )
    logger.warning(
        "Ensure 'descript-audio-codec' is installed correctly (pip install descript-audio-codec)."
    )
    # If this check fails, _load_dac_model will likely raise an error later anyway.


def _sample_next_token(
    logits_BCxV: torch.Tensor,
    temperature: float,
    top_p: float,
    use_cfg_filter: bool,
    cfg_filter_top_k: int | None = None,
) -> torch.Tensor:
    """Samples the next token based on logits, temperature, and top_p."""
    if temperature == 0.0:
        # Greedy sampling
        return torch.argmax(logits_BCxV, dim=-1)

    # Apply temperature scaling
    logits_BCxV = logits_BCxV / temperature

    # Apply CFG Top-K filtering (optional)
    if use_cfg_filter and cfg_filter_top_k is not None:
        # Get top K values and indices
        _, top_k_indices_BCxV = torch.topk(logits_BCxV, k=cfg_filter_top_k, dim=-1)
        # Create a mask to keep only top K logits
        mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
        mask.scatter_(
            dim=-1, index=top_k_indices_BCxV, value=False
        )  # Set top K positions to False (don't mask)
        # Mask out logits not in the top K
        logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)

    # Apply Top-P (Nucleus) sampling
    if top_p < 1.0:
        # Convert logits to probabilities
        probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
        # Sort probabilities in descending order
        sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(
            probs_BCxV, dim=-1, descending=True
        )
        # Calculate cumulative probabilities
        cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)

        # Create mask for tokens to remove (those exceeding top_p threshold)
        sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
        # Shift the mask: keep the first token that crosses the threshold
        sorted_indices_to_remove_BCxV[..., 1:] = sorted_indices_to_remove_BCxV[
            ..., :-1
        ].clone()
        sorted_indices_to_remove_BCxV[..., 0] = 0  # Always keep the most probable token

        # Scatter the mask back to the original order
        indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
        indices_to_remove_BCxV.scatter_(
            dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
        )
        # Apply the mask to the logits
        logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)

    # Calculate final probabilities after filtering
    final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)

    # Sample from the filtered distribution
    # multinomial expects probabilities for each item in the batch
    sampled_indices_BC = torch.multinomial(
        final_probs_BCxV, num_samples=1
    )  # Shape [B*C, 1]
    sampled_indices_C = sampled_indices_BC.squeeze(
        -1
    )  # Shape [B*C] -> should be [C] if input was [C,V]
    return sampled_indices_C


class Dia:
    """
    Main class for the Dia Text-to-Speech model, handling loading and generation.
    """

    def __init__(self, config: DiaConfig, device: torch.device = torch.device("cuda")):
        """
        Initializes the Dia model structure based on the provided configuration.
        Does not load weights here.

        Args:
            config: The DiaConfig object defining model parameters.
            device: The torch device (e.g., 'cuda', 'cpu') the model should eventually run on.
                    Note: The model is instantiated but not moved to the device here.
        """
        super().__init__()
        logger.info(
            f"Initializing Dia model structure with config version: {config.version}"
        )
        self.config = config
        # Store the target device, but don't move the model yet. Loading weights will handle device placement.
        self.target_device = device
        # Instantiate the underlying PyTorch model based on the config
        self.model = DiaModel(config)
        self.dac_model = None  # DAC model will be loaded separately
        logger.info("Dia model structure initialized.")

    @classmethod
    def load_model_from_files(
        cls,
        config_path: str,
        weights_path: str,
        device: torch.device = torch.device("cuda"),
    ) -> "Dia":
        """
        Loads the Dia model from local configuration and weights files.
        Handles both .pth and .safetensors weight formats.

        Args:
            config_path: Path to the configuration JSON file (e.g., 'config.json').
            weights_path: Path to the model weights file (e.g., 'model.pth' or 'model.safetensors').
            device: The torch device ('cuda', 'cpu', etc.) to load the model onto.

        Returns:
            An instance of the Dia model loaded with weights and set to eval mode.

        Raises:
            FileNotFoundError: If the config or weights file is not found.
            ValueError: If the weights file format is unsupported.
            RuntimeError: If there is an error loading the config, weights, or DAC model.
        """
        logger.info(f"Loading Dia model from local files:")
        logger.info(f"  Config: {config_path}")
        logger.info(f"  Weights: {weights_path}")
        logger.info(f"  Target Device: {device}")

        # 1. Load Configuration
        try:
            config = DiaConfig.load(config_path)
            if config is None:
                # DiaConfig.load returns None on FileNotFoundError
                logger.error(f"Configuration file not found at {config_path}")
                raise FileNotFoundError(
                    f"Configuration file not found at {config_path}"
                )
            logger.info("Configuration loaded successfully.")
        except Exception as e:
            logger.error(
                f"Error loading or validating configuration from {config_path}: {e}",
                exc_info=True,
            )
            raise RuntimeError(
                f"Failed to load configuration from {config_path}"
            ) from e

        # 2. Instantiate Model Structure
        # Pass the target device during instantiation if the underlying DiaModel supports it,
        # otherwise, we move it later. Assuming __init__ doesn't take device for now.
        dia_instance = cls(
            config, device
        )  # Pass device mainly for storing target_device

        # 3. Load Weights (State Dictionary)
        try:
            logger.info(f"Loading weights from: {weights_path}")
            weights_filename = os.path.basename(weights_path)
            state_dict = None

            if weights_filename.endswith(".safetensors"):
                logger.info(
                    "Detected .safetensors format. Loading using safetensors library."
                )
                # load_file loads directly to the specified device
                state_dict = load_file(weights_path, device=str(device))
                logger.info("Safetensors weights loaded.")
            elif weights_filename.endswith(".pth"):
                logger.info("Detected .pth format. Loading using torch.load.")
                # torch.load needs map_location to load onto the correct device
                state_dict = torch.load(weights_path, map_location=device)
                logger.info("PyTorch weights (.pth) loaded.")
            else:
                logger.error(
                    f"Unsupported weights file format: {weights_filename}. Expected .pth or .safetensors."
                )
                raise ValueError(f"Unsupported weights file format: {weights_filename}")

            # Load the state dictionary into the model structure
            logger.info("Applying loaded weights to the model structure...")
            # Use strict=True by default to catch mismatches. Can be set to False if needed for specific conversions (e.g., BF16 -> FP32 partial loads)
            dia_instance.model.load_state_dict(state_dict, strict=True)
            logger.info("Weights applied successfully.")

        except FileNotFoundError:
            logger.error(f"Weights file not found at {weights_path}")
            raise FileNotFoundError(f"Weights file not found at {weights_path}")
        except Exception as e:
            logger.error(
                f"Error loading weights from {weights_path}: {e}", exc_info=True
            )
            raise RuntimeError(f"Error loading weights from {weights_path}") from e

        # 4. Move Model to Device and Set Eval Mode
        logger.info(f"Moving model to device: {device}...")
        dia_instance.model.to(device)
        logger.info("Setting model to evaluation mode...")
        dia_instance.model.eval()

        # 5. Load Associated DAC Model
        logger.info("Loading associated DAC model...")
        dia_instance._load_dac_model()  # This will log its own progress/errors

        logger.info("Dia model fully loaded and ready.")
        return dia_instance

    # REMOVED from_pretrained - Responsibility moved to engine.py
    # @classmethod
    # def from_pretrained(...) -> "Dia": ...

    def _load_dac_model(self):
        """Loads the Descript Audio Codec (DAC) model using the original project's method."""
        if self.dac_model is not None:
            logger.info("DAC model already loaded.")
            return

        # Verify the imported module has the necessary structure expected by original code
        if (
            not hasattr(dac, "utils")
            or not hasattr(dac.utils, "download")
            or not hasattr(dac, "DAC")
        ):
            logger.error(
                "Imported 'dac' module structure mismatch. Expected 'dac.utils.download()' and 'dac.DAC'."
            )
            logger.error(
                "Ensure 'descript-audio-codec' is installed correctly via pip."
            )
            raise RuntimeError(
                "Failed to load DAC model: required functions/structure missing from 'dac' module."
            )

        try:
            # Use the original method found in the Dia repository
            logger.info("Downloading/finding DAC model using dac.utils.download()...")
            # This assumes dac.utils.download() handles caching internally
            dac_model_path = dac.utils.download()
            logger.info(f"DAC model path determined: {dac_model_path}")

            logger.info("Loading DAC model from path...")
            # Load DAC model and move it to the same device as the main Dia model
            dac_model = dac.DAC.load(dac_model_path).to(self.target_device)
            logger.info("DAC model loaded successfully.")

        except AttributeError as ae:
            logger.error(
                f"AttributeError loading DAC model: '{ae}'. The installed 'descript-audio-codec' version might be incompatible with Dia's original code which expects 'dac.utils.download()'."
            )
            logger.error(
                "Please check for specific version requirements of 'descript-audio-codec' for Dia, or potential installation issues."
            )
            raise RuntimeError(
                "Failed to load DAC model due to incompatible library version or structure"
            ) from ae
        except Exception as e:
            logger.error(f"General error loading DAC model: {e}", exc_info=True)
            raise RuntimeError("Failed to load DAC model") from e

        self.dac_model = dac_model

    def _create_attn_mask(
        self,
        q_padding_mask_1d: torch.Tensor,
        k_padding_mask_1d: torch.Tensor,
        is_causal: bool = False,
    ) -> torch.Tensor:
        """
        Creates the attention mask (self or cross) based on padding masks.
        Mimics JAX segment ID logic where attention is allowed between non-padding tokens
        OR between padding tokens, but not across the boundary.

        Args:
            q_padding_mask_1d: Boolean tensor [Batch, SeqLenQ] where True indicates non-padding.
            k_padding_mask_1d: Boolean tensor [Batch, SeqLenK] where True indicates non-padding.
            is_causal: If True, applies an additional causal mask (for decoder self-attention).

        Returns:
            Boolean attention mask tensor [Batch, 1, SeqLenQ, SeqLenK] ready for F.scaled_dot_product_attention.
        """
        B1, Tq = q_padding_mask_1d.shape
        B2, Tk = k_padding_mask_1d.shape
        if B1 != B2:
            logger.warning(
                f"Query ({B1}) and key ({B2}) batch dimensions do not match in _create_attn_mask"
            )
        assert B1 == B2, "Query and key batch dimensions must match"

        # Expand masks for broadcasting: [B, Tq, 1] and [B, 1, Tk]
        p_mask_q = q_padding_mask_1d.unsqueeze(2)
        p_mask_k = k_padding_mask_1d.unsqueeze(1)

        # True where a non-padding query token attends to a non-padding key token
        non_pad_attends_non_pad = p_mask_q & p_mask_k  # Shape [B, Tq, Tk]
        # True where a padding query token attends to a padding key token
        pad_attends_pad = (~p_mask_q) & (~p_mask_k)  # Shape [B, Tq, Tk]

        # Combine: Attention is allowed if tokens are both non-padding OR both padding.
        mask = non_pad_attends_non_pad | pad_attends_pad  # Shape [B, Tq, Tk]

        if is_causal:
            # Apply causal mask for self-attention (query cannot attend to future keys)
            if Tq != Tk:
                logger.warning(f"Causal mask requested but Tq ({Tq}) != Tk ({Tk})")
            assert (
                Tq == Tk
            ), "Causal mask requires query and key sequence lengths to be equal"
            # Create lower triangular matrix (True allows attention)
            causal_mask_2d = torch.tril(
                torch.ones((Tq, Tk), dtype=torch.bool, device=self.target_device)
            )
            # Combine with padding compatibility mask
            mask = mask & causal_mask_2d  # Shape [B, Tq, Tk]

        # Add head dimension for broadcasting: [B, 1, Tq, Tk]
        return mask.unsqueeze(1)

    def _prepare_text_input(
        self, text: str
    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Encodes text prompt into byte tokens, pads to max length,
        and creates position IDs and padding mask.

        Args:
            text: The input text string.

        Returns:
            Tuple containing:
                - src_tokens: Padded token IDs [1, SeqLen].
                - src_positions: Position IDs [1, SeqLen].
                - src_padding_mask: Boolean mask (True=non-pad) [1, SeqLen].
                - enc_self_attn_mask: Attention mask for encoder [1, 1, SeqLen, SeqLen].
        """
        text_pad_value = self.config.data.text_pad_value
        max_len = self.config.data.text_length
        logger.debug(
            f"Preparing text input. Max length: {max_len}, Pad value: {text_pad_value}"
        )
        logger.debug(f"Original text (start): '{text[:100]}...'")

        # Convert text to bytes and replace special speaker tokens
        byte_text = text.encode("utf-8")
        # Assuming Dia uses byte values 1 and 2 for S1/S2 based on original code context
        replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
        text_tokens = list(replaced_bytes)  # List of integer byte values
        logger.debug(
            f"Text tokens after byte conversion (first 10): {text_tokens[:10]}"
        )

        # Pad or truncate sequence
        current_len = len(text_tokens)
        padding_needed = max_len - current_len
        if padding_needed <= 0:
            if current_len > max_len:
                logger.warning(
                    f"Input text length ({current_len}) exceeds max length ({max_len}). Truncating."
                )
                text_tokens = text_tokens[:max_len]
            padded_text_np = np.array(text_tokens, dtype=np.uint8)
        else:
            logger.debug(f"Padding text input with {padding_needed} pad tokens.")
            padded_text_np = np.pad(
                text_tokens,
                (0, padding_needed),
                mode="constant",
                constant_values=text_pad_value,
            ).astype(np.uint8)

        # Convert to tensors and add batch dimension [1, SeqLen]
        src_tokens = (
            torch.from_numpy(padded_text_np)
            .to(torch.long)
            .to(self.target_device)
            .unsqueeze(0)
        )
        src_positions = (
            torch.arange(max_len, device=self.target_device).to(torch.long).unsqueeze(0)
        )

        # Create padding mask (True where token is NOT the pad value)
        src_padding_mask = src_tokens != text_pad_value  # Shape [1, SeqLen]

        # Create attention mask for the encoder (non-causal self-attention)
        # Needs shape [B, 1, Tq, Tk] -> [1, 1, SeqLen, SeqLen]
        enc_self_attn_mask = self._create_attn_mask(
            src_padding_mask, src_padding_mask, is_causal=False
        )

        logger.debug(f"Prepared src_tokens shape: {src_tokens.shape}")
        logger.debug(f"Prepared src_positions shape: {src_positions.shape}")
        logger.debug(
            f"Prepared src_padding_mask shape: {src_padding_mask.shape} (True means non-padding)"
        )
        logger.debug(f"Prepared enc_self_attn_mask shape: {enc_self_attn_mask.shape}")

        return src_tokens, src_positions, src_padding_mask, enc_self_attn_mask

    @torch.inference_mode()
    def generate(
        self,
        text: str,
        max_tokens: int | None = None,
        cfg_scale: float = 3.0,
        temperature: float = 1.3,
        top_p: float = 0.95,
        use_cfg_filter: bool = True,
        use_torch_compile: bool = False,  # Default to False for broader compatibility
        cfg_filter_top_k: int = 35,
        audio_prompt_path: str | None = None,
    ) -> np.ndarray:
        """
        Generates audio waveform from a text prompt, optionally conditioned on an audio prompt.

        Args:
            text: The input text string. For dialogue, use [S1]/[S2] markers.
                  For voice cloning, prepend the transcript of the audio prompt.
            max_tokens: Maximum number of audio tokens (frames) to generate. Defaults to config value.
            cfg_scale: Classifier-Free Guidance scale. Higher values increase adherence to text.
            temperature: Sampling temperature. Higher values increase randomness.
            top_p: Nucleus sampling probability. Filters vocabulary during sampling.
            use_cfg_filter: Whether to apply Top-K filtering based on CFG logits.
            use_torch_compile: If True, attempts to compile the decoder step for potential speedup.
            cfg_filter_top_k: The 'K' value for CFG Top-K filtering.
            audio_prompt_path: Path to an audio file (e.g., WAV, MP3) to use as a voice prompt/clone target.

        Returns:
            A 1D NumPy array containing the generated audio waveform (float32).
        """
        start_time_gen = time.time()
        logger.info("Starting audio generation...")
        logger.info(f"  Text (start): '{text[:100]}...'")
        logger.info(
            f"  Max tokens: {max_tokens if max_tokens is not None else 'Model Default'}"
        )
        logger.info(f"  CFG Scale: {cfg_scale}")
        logger.info(f"  Temperature: {temperature}")
        logger.info(f"  Top P: {top_p}")
        logger.info(f"  Use CFG Filter: {use_cfg_filter}, Top K: {cfg_filter_top_k}")
        logger.info(
            f"  Audio Prompt: {audio_prompt_path if audio_prompt_path else 'None'}"
        )
        logger.info(f"  Use torch.compile: {use_torch_compile}")
        logger.info(f"  Target Device: {self.target_device}")

        # --- Parameter Setup ---
        num_channels = self.config.data.channels
        audio_bos_value = self.config.data.audio_bos_value
        audio_eos_value = self.config.data.audio_eos_value
        audio_pad_value = self.config.data.audio_pad_value
        delay_pattern = self.config.data.delay_pattern
        # Use model's default audio length if max_tokens not provided
        effective_max_tokens = (
            max_tokens if max_tokens is not None else self.config.data.audio_length
        )
        logger.info(f"  Effective max_tokens for generation: {effective_max_tokens}")

        # Ensure delay pattern is usable
        if not isinstance(delay_pattern, list) or not delay_pattern:
            logger.warning("Delay pattern is invalid or empty. Using default [0].")
            delay_pattern = [
                0
            ] * num_channels  # Fallback, though config should provide default

        delay_tensor = torch.tensor(
            delay_pattern, dtype=torch.long, device=self.target_device
        )
        max_delay_pattern = max(delay_pattern) if delay_pattern else 0
        self.model.eval()  # Ensure model is in eval mode

        # --- Prepare Conditional and Unconditional Inputs ---
        logger.info(
            "Preparing text inputs for conditional and unconditional generation..."
        )
        (
            cond_src_BxS,
            cond_src_positions_BxS,
            cond_src_padding_mask_BxS,
            cond_enc_self_attn_mask_Bx1xSxS,
        ) = self._prepare_text_input(text)

        # Create unconditional input (batch of zeros representing padding)
        # Assuming pad value 0 for text based on config default
        unc_src_BxS = torch.full_like(
            cond_src_BxS, fill_value=self.config.data.text_pad_value
        )
        # Batch conditional and unconditional inputs together [2, SeqLen]
        src_BxS = torch.cat([unc_src_BxS, cond_src_BxS], dim=0)
        # Expand other inputs to match batch size 2
        src_positions_BxS = cond_src_positions_BxS.expand(2, -1)
        src_padding_mask_BxS = torch.cat(
            [
                torch.zeros_like(cond_src_padding_mask_BxS[0:1]),
                cond_src_padding_mask_BxS,
            ],
            dim=0,
        )  # Uncond mask is all False (padding)
        # Encoder mask needs to handle the batched input correctly
        # For CFG, typically the unconditional branch attends to nothing useful from text,
        # but the structure needs to be maintained. We can reuse the conditional mask structure,
        # but the actual attention scores will be based on the zeroed-out unconditional input.
        # Alternatively, create a specific mask for the unconditional part if needed.
        # Let's expand the conditional mask for simplicity, assuming the model handles zero inputs appropriately.
        enc_self_attn_mask_Bx1xSxS = cond_enc_self_attn_mask_Bx1xSxS.expand(
            2, -1, -1, -1
        )
        logger.info("Text inputs prepared (batch size 2 for CFG).")

        # --- Encoder Pass ---
        logger.info("Running encoder pass...")
        start_time_enc = time.time()
        # Potentially use autocast for mixed precision if supported and beneficial on device
        # Example: with torch.autocast(device_type=self.target_device.type, dtype=torch.bfloat16 if self.target_device.type == 'cuda' else torch.float32):
        encoder_out = self.model.encoder(
            x_ids=src_BxS,  # Shape [2, S]
            src_positions=src_positions_BxS,  # Shape [2, S]
            deterministic=True,  # No dropout during inference
            attn_mask=enc_self_attn_mask_Bx1xSxS,  # Shape [2, 1, S, S]
        )
        logger.info(
            f"Encoder pass completed in {time.time() - start_time_enc:.3f}s. Output shape: {encoder_out.shape}"
        )  # Shape: [2, S, E]

        # --- Prepare Decoder Inputs & KV Cache ---
        logger.info("Preparing decoder inputs and KV cache...")
        start_time_kv = time.time()
        # 3-1. Precompute Cross-Attention KV Cache (Static) from encoder output
        # This cache is computed once and reused for every decoding step.
        decoder_cross_attention_cache: list[KVCache] = (
            self.model.decoder.precompute_cross_attention_kv(
                effective_max_tokens, encoder_out, src_positions_BxS
            )
        )
        logger.debug(
            f"Precomputed cross-attention KV cache for {len(decoder_cross_attention_cache)} layers."
        )

        # 3-2. Initialize Self-Attention KV Cache (Dynamic, grows with each step)
        decoder_self_attention_cache: list[KVCache] = []
        for i in range(self.model.decoder.num_layers):
            decoder_self_attention_cache.append(
                KVCache(
                    self.config.model.decoder.gqa_query_heads,
                    effective_max_tokens,  # Max length the cache can hold
                    self.config.model.decoder.gqa_head_dim,
                    self.target_device,  # Cache tensors should be on the target device
                )
            )
        logger.debug(
            f"Initialized self-attention KV cache for {len(decoder_self_attention_cache)} layers."
        )
        logger.info(
            f"KV cache preparation completed in {time.time() - start_time_kv:.3f}s."
        )

        # 3-3. Initialize Decoder Start Tokens (BOS)
        # Shape [2, 1, C] (Batch=2 for cond/uncond, T=1 for first step, C=channels)
        generated_tokens_history = torch.full(
            (2, 1, num_channels),
            fill_value=audio_bos_value,
            dtype=torch.long,
            device=self.target_device,
        )
        logger.debug(f"Initial decoder input (BOS): {generated_tokens_history.shape}")

        current_step_index = (
            0  # Index of the step we are currently generating (starts at 0)
        )
        prompt_len_inc_bos = 1  # Length of the initial prompt (just BOS initially)

        # 3-4. Handle Audio Prompt (Prefill KV Cache)
        if audio_prompt_path is not None:
            logger.info("Processing audio prompt for prefilling...")
            start_time_prompt = time.time()
            try:
                # Load and potentially resample audio
                audio_prompt_waveform, sr = torchaudio.load(audio_prompt_path)
                logger.debug(
                    f"Loaded audio prompt: {audio_prompt_waveform.shape}, Sample Rate: {sr}"
                )
                if sr != 44100:
                    logger.info(f"Resampling audio prompt from {sr}Hz to 44100Hz")
                    audio_prompt_waveform = torchaudio.functional.resample(
                        audio_prompt_waveform, sr, 44100
                    )
                # Ensure correct shape [B, C, T_audio] and device
                # Assuming DAC expects channels first, add batch dim
                if audio_prompt_waveform.ndim == 1:  # Mono
                    audio_prompt_waveform = audio_prompt_waveform.unsqueeze(
                        0
                    )  # Add channel dim
                audio_prompt_waveform = audio_prompt_waveform.unsqueeze(0).to(
                    self.target_device
                )  # Add batch dim

                # Encode audio prompt to codes using DAC
                logger.info("Encoding audio prompt to codes using DAC...")
                if self.dac_model is None:
                    raise RuntimeError(
                        "DAC model not loaded, required for audio prompt."
                    )
                # audio_to_codebook returns [B, T_codes, C]
                audio_prompt_codes = audio_to_codebook(
                    self.dac_model, audio_prompt_waveform, data_config=self.config.data
                )  # Shape [1, T_codes, C]
                logger.info(
                    f"Encoded audio prompt to codes: {audio_prompt_codes.shape}"
                )

                # Concatenate BOS tokens with prompt codes
                # Expand prompt codes to batch size 2 (for cond/uncond)
                generated_tokens_history = torch.cat(
                    [generated_tokens_history, audio_prompt_codes.expand(2, -1, -1)],
                    dim=1,
                )  # Shape [2, 1 + T_codes, C]
                logger.debug(
                    f"Decoder input history after prompt concatenation: {generated_tokens_history.shape}"
                )

                prefill_len = generated_tokens_history.shape[
                    1
                ]  # Length including BOS + prompt
                prompt_len_inc_bos = prefill_len
                logger.info(f"Prefilling KV cache with length {prefill_len}...")

                # Prepare inputs for prefill forward pass
                prefill_tgt_pos = (
                    torch.arange(prefill_len, device=self.target_device)
                    .unsqueeze(0)
                    .expand(2, -1)
                )  # Shape [2, T_prefill]
                # Padding mask based on actual tokens (BOS and prompt codes are not PAD)
                # Shape [2, T_prefill] (True where not PAD)
                prefill_tgt_padding_mask = (
                    generated_tokens_history != audio_pad_value
                ).any(dim=2)

                # Create attention masks for prefill
                # Shape [2, 1, T_prefill, T_prefill]
                prefill_self_attn_mask = self._create_attn_mask(
                    prefill_tgt_padding_mask,
                    prefill_tgt_padding_mask,
                    is_causal=True,
                )
                # Shape [2, 1, T_prefill, S]
                prefill_cross_attn_mask = self._create_attn_mask(
                    prefill_tgt_padding_mask,
                    src_padding_mask_BxS,
                    is_causal=False,
                )

                # Run forward pass through decoder to fill the self-attention KV cache
                # We discard the logits from prefill
                _ = self.model.decoder.forward(
                    tgt_ids_BxTxC=generated_tokens_history,  # Pass the full history [2, T_prefill, C]
                    encoder_out=encoder_out,
                    tgt_positions=prefill_tgt_pos,
                    src_positions=src_positions_BxS,
                    deterministic=True,
                    self_attn_mask=prefill_self_attn_mask,
                    cross_attn_mask=prefill_cross_attn_mask,
                    self_attention_cache=decoder_self_attention_cache,  # Pass cache to be filled
                    cross_attention_cache=decoder_cross_attention_cache,  # Pass precomputed cache
                    # prefill=True # Pass prefill flag if decoder layer uses it
                )

                # Update the current step index. The next token to generate is at index prefill_len.
                current_step_index = prefill_len
                logger.info(
                    f"KV cache prefilled in {time.time() - start_time_prompt:.3f}s. Next step index: {current_step_index}"
                )

            except Exception as e:
                logger.error(f"Error processing audio prompt: {e}", exc_info=True)
                raise RuntimeError("Failed to process audio prompt") from e

        # --- Autoregressive Generation Loop ---
        logger.info("Starting autoregressive generation loop...")
        start_time_loop = time.time()

        eos_detected_channel_0 = False
        eos_countdown = -1  # Countdown after EOS detected in channel 0
        extra_steps_after_eos = (
            30  # Generate a few extra steps for delay pattern completion
        )

        # Pre-allocate tensor for storing *newly* generated tokens for efficiency
        # We already have the prompt in generated_tokens_history
        num_steps_to_generate = effective_max_tokens
        newly_generated_tokens = torch.full(
            (2, num_steps_to_generate, num_channels),
            fill_value=audio_pad_value,  # Fill with pad initially
            dtype=torch.long,
            device=self.target_device,
        )
        logger.debug(
            f"Allocated tensor for newly generated tokens: {newly_generated_tokens.shape}"
        )

        # --- Compile decode_step if requested ---
        decode_step_fn = self.model.decoder.decode_step
        if use_torch_compile:
            logger.info("Compiling decoder step function with torch.compile...")
            try:
                # Experiment with modes: "default", "reduce-overhead", "max-autotune"
                decode_step_fn = torch.compile(decode_step_fn, mode="reduce-overhead")
                logger.info("Decoder step function compiled.")
            except Exception as e:
                logger.warning(
                    f"torch.compile failed: {e}. Using eager mode.", exc_info=True
                )

        # --- Prepare static cross-attention mask for single-step decoding ---
        # Query mask is always [B, 1] (True, as generated tokens are not PAD)
        step_tgt_padding_mask = torch.ones(
            (2, 1), dtype=torch.bool, device=self.target_device
        )
        # Shape [2, 1, 1, S]
        step_decoder_cross_attn_mask = self._create_attn_mask(
            step_tgt_padding_mask,
            src_padding_mask_BxS,
            is_causal=False,
        )

        # --- Generation Loop ---
        steps_taken = 0
        for step_offset in range(num_steps_to_generate):
            # Absolute step index considering prompt length
            current_absolute_step = current_step_index + step_offset

            # Get the token IDs for the *previous* step to predict the current one
            # Shape [2, 1, C]
            # If step_offset is 0, use the last token from the prompt history
            if step_offset == 0:
                input_token_ids = generated_tokens_history[:, -1, :].unsqueeze(1)
            else:
                # Use the token generated in the previous iteration of this loop
                input_token_ids = newly_generated_tokens[
                    :, step_offset - 1, :
                ].unsqueeze(1)

            # Position ID for the current absolute step
            # Shape [2, 1]
            tgt_pos_Bx1 = torch.full(
                (2, 1),
                fill_value=current_absolute_step,
                dtype=torch.long,
                device=self.target_device,
            )

            # --- Call Decoder Step ---
            # self_attn_mask is None because KV cache handles causality implicitly in single-step decoding
            logits_Bx1xCxV, new_self_kv_cache_list = decode_step_fn(
                tgt_ids_Bx1xC=input_token_ids,
                tgt_pos_Bx1=tgt_pos_Bx1,
                encoder_out=encoder_out,
                self_attn_mask=None,
                cross_attn_mask=step_decoder_cross_attn_mask,
                self_attention_cache=decoder_self_attention_cache,
                cross_attention_cache=decoder_cross_attention_cache,
            )  # Logits shape: [2, 1, C, V]

            # --- Update Self-Attention KV Cache ---
            for i, layer_cache in enumerate(decoder_self_attention_cache):
                if (
                    new_self_kv_cache_list
                    and i < len(new_self_kv_cache_list)
                    and new_self_kv_cache_list[i] is not None
                ):
                    # new_self_kv_cache_list[i] is a tuple (k_tensor, v_tensor) for the current step
                    # k_tensor shape: [2, NumHeads, 1, HeadDim]
                    # v_tensor shape: [2, NumHeads, 1, HeadDim]
                    layer_cache.update_cache(
                        new_self_kv_cache_list[i][0], new_self_kv_cache_list[i][1]
                    )
                else:
                    logger.warning(
                        f"Missing KV cache update for layer {i} at step {current_absolute_step}"
                    )

            # --- Sampling ---
            V = self.config.model.tgt_vocab_size
            # Get logits for the generated step [2, C, V]
            logits_last_BxCxV = logits_Bx1xCxV.squeeze(1)

            # Separate conditional and unconditional logits
            uncond_logits_CxV = logits_last_BxCxV[0, :, :]  # Shape [C, V]
            cond_logits_CxV = logits_last_BxCxV[1, :, :]  # Shape [C, V]

            # Apply Classifier-Free Guidance (CFG)
            cfg_logits_CxV = cond_logits_CxV + cfg_scale * (
                cond_logits_CxV - uncond_logits_CxV
            )  # Shape [C, V]

            # --- Prevent sampling PAD/EOS/BOS tokens inappropriately ---
            logits_for_sampling_CxV = (
                cfg_logits_CxV.clone()
            )  # Clone to avoid modifying original logits
            logits_for_sampling_CxV[:, audio_pad_value] = -torch.inf  # Never sample PAD
            logits_for_sampling_CxV[:, audio_bos_value] = (
                -torch.inf
            )  # Never sample BOS after start
            # Allow EOS only if not already detected or in countdown
            if eos_detected_channel_0 and eos_countdown <= 0:
                logits_for_sampling_CxV[:, audio_eos_value] = -torch.inf

            # --- Sample the next token for each channel ---
            pred_C = _sample_next_token(
                logits_for_sampling_CxV.float(),  # Ensure float32 for sampling stability
                temperature=temperature,
                top_p=top_p,
                use_cfg_filter=use_cfg_filter,
                cfg_filter_top_k=cfg_filter_top_k,
            )  # Shape [C]

            # --- Handle Delay Pattern (Only if no audio prompt was given) ---
            # If there's no prompt, the first few tokens should be BOS according to delay
            # generation_step_index is how many tokens generated *after* prompt/initial BOS
            generation_step_index = step_offset
            if audio_prompt_path is None:
                is_before_delay = generation_step_index < delay_tensor  # Shape [C]
                pred_C = torch.where(
                    is_before_delay,
                    torch.tensor(
                        audio_bos_value, device=self.target_device, dtype=torch.long
                    ),
                    pred_C,
                )

            # --- Store the predicted token in the newly_generated_tokens tensor ---
            newly_generated_tokens[:, step_offset, :] = pred_C.unsqueeze(0).expand(
                2, -1
            )

            steps_taken += 1  # Increment steps taken in this loop

            # --- EOS Handling ---
            if not eos_detected_channel_0 and pred_C[0] == audio_eos_value:
                logger.info(
                    f"EOS token detected in channel 0 at step {current_absolute_step}. Starting countdown."
                )
                eos_detected_channel_0 = True
                eos_countdown = extra_steps_after_eos

            if eos_countdown > 0:
                step_after_eos = extra_steps_after_eos - eos_countdown
                logger.debug(
                    f"EOS countdown: {eos_countdown}, Step after EOS: {step_after_eos}"
                )
                # Modify the token *just generated* if needed for EOS/PAD forcing
                current_new_tokens = newly_generated_tokens[
                    :, step_offset, :
                ]  # Shape [2, C]
                for i, d in enumerate(delay_pattern):
                    if step_after_eos == d:
                        logger.debug(
                            f"  Forcing EOS in channel {i} at step {current_absolute_step}"
                        )
                        current_new_tokens[:, i] = audio_eos_value
                    elif step_after_eos > d:
                        logger.debug(
                            f"  Forcing PAD in channel {i} at step {current_absolute_step}"
                        )
                        current_new_tokens[:, i] = audio_pad_value
                # Put the potentially modified tokens back
                newly_generated_tokens[:, step_offset, :] = current_new_tokens

                eos_countdown -= 1
                if eos_countdown == 0:
                    logger.info(
                        f"EOS countdown finished at step {current_absolute_step}. Stopping generation."
                    )
                    break  # Stop generation loop

            # Check if we reached the max *new* tokens requested
            if steps_taken >= num_steps_to_generate:
                logger.info(
                    f"Reached max generation steps ({num_steps_to_generate}). Stopping."
                )
                break

        logger.info(
            f"Autoregressive loop finished after {steps_taken} steps in {time.time() - start_time_loop:.3f}s."
        )

        # --- Extract Generated Codes ---
        # Get the conditional generation result (index 1) from the *newly* generated tokens
        # Only take the number of steps actually taken
        final_new_codes = newly_generated_tokens[
            1, :steps_taken, :
        ]  # Shape [T_generated, C]
        logger.info(f"Extracted newly generated codes shape: {final_new_codes.shape}")

        # --- Convert Codes to Audio using DAC ---
        logger.info("Converting generated codes to audio using DAC...")
        start_time_decode = time.time()
        if self.dac_model is None:
            raise RuntimeError("DAC model not loaded, required for audio decoding.")

        # codebook_to_audio expects codes shape [C, T]
        generated_codes_CxT = final_new_codes.transpose(0, 1)  # Shape [C, T_generated]

        if generated_codes_CxT.numel() == 0:
            logger.warning("No new codes were generated. Returning empty audio.")
            return np.array([], dtype=np.float32)

        # Call the decoding function (handles delay reversal and DAC decoding)
        audio_waveform = codebook_to_audio(
            generated_codes_CxT,
            self.dac_model,
            delay_pattern,
            B=1,  # Batch size for decoding is 1
            T=generated_codes_CxT.shape[1],  # Pass the actual length of generated codes
            C=num_channels,
        )  # Returns shape [1, T_audio] or [T_audio]

        # Ensure output is a 1D numpy array on CPU
        final_audio_np = audio_waveform.squeeze().cpu().numpy()
        logger.info(
            f"Audio decoding completed in {time.time() - start_time_decode:.3f}s. Output shape: {final_audio_np.shape}"
        )
        logger.info(f"Total generation time: {time.time() - start_time_gen:.3f}s")

        return final_audio_np