Spaces:
Running
Running
File size: 43,269 Bytes
ac5de5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
# dia/model.py
import os
import logging
import time
import dac # Keep this import name
import numpy as np
import torch
import torchaudio
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file # <<< ADDED Import for safetensors
from .audio import audio_to_codebook, codebook_to_audio
from .config import (
DiaConfig,
) # Assuming this is the Pydantic config for model structure
from .layers import DiaModel, KVCache # Assuming these are the nn.Module definitions
# --- Get a logger instance for this module ---
logger = logging.getLogger(__name__)
# Optional: Add a check after import to verify the library looks correct
# Note: We now expect 'utils' based on original code
if (
not hasattr(dac, "utils")
or not hasattr(dac.utils, "download")
or not hasattr(dac, "DAC")
):
logger.warning(
"The imported 'dac' module does not appear to have the 'utils.download' structure expected by the original Dia code."
)
logger.warning(
"Ensure 'descript-audio-codec' is installed correctly (pip install descript-audio-codec)."
)
# If this check fails, _load_dac_model will likely raise an error later anyway.
def _sample_next_token(
logits_BCxV: torch.Tensor,
temperature: float,
top_p: float,
use_cfg_filter: bool,
cfg_filter_top_k: int | None = None,
) -> torch.Tensor:
"""Samples the next token based on logits, temperature, and top_p."""
if temperature == 0.0:
# Greedy sampling
return torch.argmax(logits_BCxV, dim=-1)
# Apply temperature scaling
logits_BCxV = logits_BCxV / temperature
# Apply CFG Top-K filtering (optional)
if use_cfg_filter and cfg_filter_top_k is not None:
# Get top K values and indices
_, top_k_indices_BCxV = torch.topk(logits_BCxV, k=cfg_filter_top_k, dim=-1)
# Create a mask to keep only top K logits
mask = torch.ones_like(logits_BCxV, dtype=torch.bool)
mask.scatter_(
dim=-1, index=top_k_indices_BCxV, value=False
) # Set top K positions to False (don't mask)
# Mask out logits not in the top K
logits_BCxV = logits_BCxV.masked_fill(mask, -torch.inf)
# Apply Top-P (Nucleus) sampling
if top_p < 1.0:
# Convert logits to probabilities
probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
# Sort probabilities in descending order
sorted_probs_BCxV, sorted_indices_BCxV = torch.sort(
probs_BCxV, dim=-1, descending=True
)
# Calculate cumulative probabilities
cumulative_probs_BCxV = torch.cumsum(sorted_probs_BCxV, dim=-1)
# Create mask for tokens to remove (those exceeding top_p threshold)
sorted_indices_to_remove_BCxV = cumulative_probs_BCxV > top_p
# Shift the mask: keep the first token that crosses the threshold
sorted_indices_to_remove_BCxV[..., 1:] = sorted_indices_to_remove_BCxV[
..., :-1
].clone()
sorted_indices_to_remove_BCxV[..., 0] = 0 # Always keep the most probable token
# Scatter the mask back to the original order
indices_to_remove_BCxV = torch.zeros_like(sorted_indices_to_remove_BCxV)
indices_to_remove_BCxV.scatter_(
dim=-1, index=sorted_indices_BCxV, src=sorted_indices_to_remove_BCxV
)
# Apply the mask to the logits
logits_BCxV = logits_BCxV.masked_fill(indices_to_remove_BCxV, -torch.inf)
# Calculate final probabilities after filtering
final_probs_BCxV = torch.softmax(logits_BCxV, dim=-1)
# Sample from the filtered distribution
# multinomial expects probabilities for each item in the batch
sampled_indices_BC = torch.multinomial(
final_probs_BCxV, num_samples=1
) # Shape [B*C, 1]
sampled_indices_C = sampled_indices_BC.squeeze(
-1
) # Shape [B*C] -> should be [C] if input was [C,V]
return sampled_indices_C
class Dia:
"""
Main class for the Dia Text-to-Speech model, handling loading and generation.
"""
def __init__(self, config: DiaConfig, device: torch.device = torch.device("cuda")):
"""
Initializes the Dia model structure based on the provided configuration.
Does not load weights here.
Args:
config: The DiaConfig object defining model parameters.
device: The torch device (e.g., 'cuda', 'cpu') the model should eventually run on.
Note: The model is instantiated but not moved to the device here.
"""
super().__init__()
logger.info(
f"Initializing Dia model structure with config version: {config.version}"
)
self.config = config
# Store the target device, but don't move the model yet. Loading weights will handle device placement.
self.target_device = device
# Instantiate the underlying PyTorch model based on the config
self.model = DiaModel(config)
self.dac_model = None # DAC model will be loaded separately
logger.info("Dia model structure initialized.")
@classmethod
def load_model_from_files(
cls,
config_path: str,
weights_path: str,
device: torch.device = torch.device("cuda"),
) -> "Dia":
"""
Loads the Dia model from local configuration and weights files.
Handles both .pth and .safetensors weight formats.
Args:
config_path: Path to the configuration JSON file (e.g., 'config.json').
weights_path: Path to the model weights file (e.g., 'model.pth' or 'model.safetensors').
device: The torch device ('cuda', 'cpu', etc.) to load the model onto.
Returns:
An instance of the Dia model loaded with weights and set to eval mode.
Raises:
FileNotFoundError: If the config or weights file is not found.
ValueError: If the weights file format is unsupported.
RuntimeError: If there is an error loading the config, weights, or DAC model.
"""
logger.info(f"Loading Dia model from local files:")
logger.info(f" Config: {config_path}")
logger.info(f" Weights: {weights_path}")
logger.info(f" Target Device: {device}")
# 1. Load Configuration
try:
config = DiaConfig.load(config_path)
if config is None:
# DiaConfig.load returns None on FileNotFoundError
logger.error(f"Configuration file not found at {config_path}")
raise FileNotFoundError(
f"Configuration file not found at {config_path}"
)
logger.info("Configuration loaded successfully.")
except Exception as e:
logger.error(
f"Error loading or validating configuration from {config_path}: {e}",
exc_info=True,
)
raise RuntimeError(
f"Failed to load configuration from {config_path}"
) from e
# 2. Instantiate Model Structure
# Pass the target device during instantiation if the underlying DiaModel supports it,
# otherwise, we move it later. Assuming __init__ doesn't take device for now.
dia_instance = cls(
config, device
) # Pass device mainly for storing target_device
# 3. Load Weights (State Dictionary)
try:
logger.info(f"Loading weights from: {weights_path}")
weights_filename = os.path.basename(weights_path)
state_dict = None
if weights_filename.endswith(".safetensors"):
logger.info(
"Detected .safetensors format. Loading using safetensors library."
)
# load_file loads directly to the specified device
state_dict = load_file(weights_path, device=str(device))
logger.info("Safetensors weights loaded.")
elif weights_filename.endswith(".pth"):
logger.info("Detected .pth format. Loading using torch.load.")
# torch.load needs map_location to load onto the correct device
state_dict = torch.load(weights_path, map_location=device)
logger.info("PyTorch weights (.pth) loaded.")
else:
logger.error(
f"Unsupported weights file format: {weights_filename}. Expected .pth or .safetensors."
)
raise ValueError(f"Unsupported weights file format: {weights_filename}")
# Load the state dictionary into the model structure
logger.info("Applying loaded weights to the model structure...")
# Use strict=True by default to catch mismatches. Can be set to False if needed for specific conversions (e.g., BF16 -> FP32 partial loads)
dia_instance.model.load_state_dict(state_dict, strict=True)
logger.info("Weights applied successfully.")
except FileNotFoundError:
logger.error(f"Weights file not found at {weights_path}")
raise FileNotFoundError(f"Weights file not found at {weights_path}")
except Exception as e:
logger.error(
f"Error loading weights from {weights_path}: {e}", exc_info=True
)
raise RuntimeError(f"Error loading weights from {weights_path}") from e
# 4. Move Model to Device and Set Eval Mode
logger.info(f"Moving model to device: {device}...")
dia_instance.model.to(device)
logger.info("Setting model to evaluation mode...")
dia_instance.model.eval()
# 5. Load Associated DAC Model
logger.info("Loading associated DAC model...")
dia_instance._load_dac_model() # This will log its own progress/errors
logger.info("Dia model fully loaded and ready.")
return dia_instance
# REMOVED from_pretrained - Responsibility moved to engine.py
# @classmethod
# def from_pretrained(...) -> "Dia": ...
def _load_dac_model(self):
"""Loads the Descript Audio Codec (DAC) model using the original project's method."""
if self.dac_model is not None:
logger.info("DAC model already loaded.")
return
# Verify the imported module has the necessary structure expected by original code
if (
not hasattr(dac, "utils")
or not hasattr(dac.utils, "download")
or not hasattr(dac, "DAC")
):
logger.error(
"Imported 'dac' module structure mismatch. Expected 'dac.utils.download()' and 'dac.DAC'."
)
logger.error(
"Ensure 'descript-audio-codec' is installed correctly via pip."
)
raise RuntimeError(
"Failed to load DAC model: required functions/structure missing from 'dac' module."
)
try:
# Use the original method found in the Dia repository
logger.info("Downloading/finding DAC model using dac.utils.download()...")
# This assumes dac.utils.download() handles caching internally
dac_model_path = dac.utils.download()
logger.info(f"DAC model path determined: {dac_model_path}")
logger.info("Loading DAC model from path...")
# Load DAC model and move it to the same device as the main Dia model
dac_model = dac.DAC.load(dac_model_path).to(self.target_device)
logger.info("DAC model loaded successfully.")
except AttributeError as ae:
logger.error(
f"AttributeError loading DAC model: '{ae}'. The installed 'descript-audio-codec' version might be incompatible with Dia's original code which expects 'dac.utils.download()'."
)
logger.error(
"Please check for specific version requirements of 'descript-audio-codec' for Dia, or potential installation issues."
)
raise RuntimeError(
"Failed to load DAC model due to incompatible library version or structure"
) from ae
except Exception as e:
logger.error(f"General error loading DAC model: {e}", exc_info=True)
raise RuntimeError("Failed to load DAC model") from e
self.dac_model = dac_model
def _create_attn_mask(
self,
q_padding_mask_1d: torch.Tensor,
k_padding_mask_1d: torch.Tensor,
is_causal: bool = False,
) -> torch.Tensor:
"""
Creates the attention mask (self or cross) based on padding masks.
Mimics JAX segment ID logic where attention is allowed between non-padding tokens
OR between padding tokens, but not across the boundary.
Args:
q_padding_mask_1d: Boolean tensor [Batch, SeqLenQ] where True indicates non-padding.
k_padding_mask_1d: Boolean tensor [Batch, SeqLenK] where True indicates non-padding.
is_causal: If True, applies an additional causal mask (for decoder self-attention).
Returns:
Boolean attention mask tensor [Batch, 1, SeqLenQ, SeqLenK] ready for F.scaled_dot_product_attention.
"""
B1, Tq = q_padding_mask_1d.shape
B2, Tk = k_padding_mask_1d.shape
if B1 != B2:
logger.warning(
f"Query ({B1}) and key ({B2}) batch dimensions do not match in _create_attn_mask"
)
assert B1 == B2, "Query and key batch dimensions must match"
# Expand masks for broadcasting: [B, Tq, 1] and [B, 1, Tk]
p_mask_q = q_padding_mask_1d.unsqueeze(2)
p_mask_k = k_padding_mask_1d.unsqueeze(1)
# True where a non-padding query token attends to a non-padding key token
non_pad_attends_non_pad = p_mask_q & p_mask_k # Shape [B, Tq, Tk]
# True where a padding query token attends to a padding key token
pad_attends_pad = (~p_mask_q) & (~p_mask_k) # Shape [B, Tq, Tk]
# Combine: Attention is allowed if tokens are both non-padding OR both padding.
mask = non_pad_attends_non_pad | pad_attends_pad # Shape [B, Tq, Tk]
if is_causal:
# Apply causal mask for self-attention (query cannot attend to future keys)
if Tq != Tk:
logger.warning(f"Causal mask requested but Tq ({Tq}) != Tk ({Tk})")
assert (
Tq == Tk
), "Causal mask requires query and key sequence lengths to be equal"
# Create lower triangular matrix (True allows attention)
causal_mask_2d = torch.tril(
torch.ones((Tq, Tk), dtype=torch.bool, device=self.target_device)
)
# Combine with padding compatibility mask
mask = mask & causal_mask_2d # Shape [B, Tq, Tk]
# Add head dimension for broadcasting: [B, 1, Tq, Tk]
return mask.unsqueeze(1)
def _prepare_text_input(
self, text: str
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Encodes text prompt into byte tokens, pads to max length,
and creates position IDs and padding mask.
Args:
text: The input text string.
Returns:
Tuple containing:
- src_tokens: Padded token IDs [1, SeqLen].
- src_positions: Position IDs [1, SeqLen].
- src_padding_mask: Boolean mask (True=non-pad) [1, SeqLen].
- enc_self_attn_mask: Attention mask for encoder [1, 1, SeqLen, SeqLen].
"""
text_pad_value = self.config.data.text_pad_value
max_len = self.config.data.text_length
logger.debug(
f"Preparing text input. Max length: {max_len}, Pad value: {text_pad_value}"
)
logger.debug(f"Original text (start): '{text[:100]}...'")
# Convert text to bytes and replace special speaker tokens
byte_text = text.encode("utf-8")
# Assuming Dia uses byte values 1 and 2 for S1/S2 based on original code context
replaced_bytes = byte_text.replace(b"[S1]", b"\x01").replace(b"[S2]", b"\x02")
text_tokens = list(replaced_bytes) # List of integer byte values
logger.debug(
f"Text tokens after byte conversion (first 10): {text_tokens[:10]}"
)
# Pad or truncate sequence
current_len = len(text_tokens)
padding_needed = max_len - current_len
if padding_needed <= 0:
if current_len > max_len:
logger.warning(
f"Input text length ({current_len}) exceeds max length ({max_len}). Truncating."
)
text_tokens = text_tokens[:max_len]
padded_text_np = np.array(text_tokens, dtype=np.uint8)
else:
logger.debug(f"Padding text input with {padding_needed} pad tokens.")
padded_text_np = np.pad(
text_tokens,
(0, padding_needed),
mode="constant",
constant_values=text_pad_value,
).astype(np.uint8)
# Convert to tensors and add batch dimension [1, SeqLen]
src_tokens = (
torch.from_numpy(padded_text_np)
.to(torch.long)
.to(self.target_device)
.unsqueeze(0)
)
src_positions = (
torch.arange(max_len, device=self.target_device).to(torch.long).unsqueeze(0)
)
# Create padding mask (True where token is NOT the pad value)
src_padding_mask = src_tokens != text_pad_value # Shape [1, SeqLen]
# Create attention mask for the encoder (non-causal self-attention)
# Needs shape [B, 1, Tq, Tk] -> [1, 1, SeqLen, SeqLen]
enc_self_attn_mask = self._create_attn_mask(
src_padding_mask, src_padding_mask, is_causal=False
)
logger.debug(f"Prepared src_tokens shape: {src_tokens.shape}")
logger.debug(f"Prepared src_positions shape: {src_positions.shape}")
logger.debug(
f"Prepared src_padding_mask shape: {src_padding_mask.shape} (True means non-padding)"
)
logger.debug(f"Prepared enc_self_attn_mask shape: {enc_self_attn_mask.shape}")
return src_tokens, src_positions, src_padding_mask, enc_self_attn_mask
@torch.inference_mode()
def generate(
self,
text: str,
max_tokens: int | None = None,
cfg_scale: float = 3.0,
temperature: float = 1.3,
top_p: float = 0.95,
use_cfg_filter: bool = True,
use_torch_compile: bool = False, # Default to False for broader compatibility
cfg_filter_top_k: int = 35,
audio_prompt_path: str | None = None,
) -> np.ndarray:
"""
Generates audio waveform from a text prompt, optionally conditioned on an audio prompt.
Args:
text: The input text string. For dialogue, use [S1]/[S2] markers.
For voice cloning, prepend the transcript of the audio prompt.
max_tokens: Maximum number of audio tokens (frames) to generate. Defaults to config value.
cfg_scale: Classifier-Free Guidance scale. Higher values increase adherence to text.
temperature: Sampling temperature. Higher values increase randomness.
top_p: Nucleus sampling probability. Filters vocabulary during sampling.
use_cfg_filter: Whether to apply Top-K filtering based on CFG logits.
use_torch_compile: If True, attempts to compile the decoder step for potential speedup.
cfg_filter_top_k: The 'K' value for CFG Top-K filtering.
audio_prompt_path: Path to an audio file (e.g., WAV, MP3) to use as a voice prompt/clone target.
Returns:
A 1D NumPy array containing the generated audio waveform (float32).
"""
start_time_gen = time.time()
logger.info("Starting audio generation...")
logger.info(f" Text (start): '{text[:100]}...'")
logger.info(
f" Max tokens: {max_tokens if max_tokens is not None else 'Model Default'}"
)
logger.info(f" CFG Scale: {cfg_scale}")
logger.info(f" Temperature: {temperature}")
logger.info(f" Top P: {top_p}")
logger.info(f" Use CFG Filter: {use_cfg_filter}, Top K: {cfg_filter_top_k}")
logger.info(
f" Audio Prompt: {audio_prompt_path if audio_prompt_path else 'None'}"
)
logger.info(f" Use torch.compile: {use_torch_compile}")
logger.info(f" Target Device: {self.target_device}")
# --- Parameter Setup ---
num_channels = self.config.data.channels
audio_bos_value = self.config.data.audio_bos_value
audio_eos_value = self.config.data.audio_eos_value
audio_pad_value = self.config.data.audio_pad_value
delay_pattern = self.config.data.delay_pattern
# Use model's default audio length if max_tokens not provided
effective_max_tokens = (
max_tokens if max_tokens is not None else self.config.data.audio_length
)
logger.info(f" Effective max_tokens for generation: {effective_max_tokens}")
# Ensure delay pattern is usable
if not isinstance(delay_pattern, list) or not delay_pattern:
logger.warning("Delay pattern is invalid or empty. Using default [0].")
delay_pattern = [
0
] * num_channels # Fallback, though config should provide default
delay_tensor = torch.tensor(
delay_pattern, dtype=torch.long, device=self.target_device
)
max_delay_pattern = max(delay_pattern) if delay_pattern else 0
self.model.eval() # Ensure model is in eval mode
# --- Prepare Conditional and Unconditional Inputs ---
logger.info(
"Preparing text inputs for conditional and unconditional generation..."
)
(
cond_src_BxS,
cond_src_positions_BxS,
cond_src_padding_mask_BxS,
cond_enc_self_attn_mask_Bx1xSxS,
) = self._prepare_text_input(text)
# Create unconditional input (batch of zeros representing padding)
# Assuming pad value 0 for text based on config default
unc_src_BxS = torch.full_like(
cond_src_BxS, fill_value=self.config.data.text_pad_value
)
# Batch conditional and unconditional inputs together [2, SeqLen]
src_BxS = torch.cat([unc_src_BxS, cond_src_BxS], dim=0)
# Expand other inputs to match batch size 2
src_positions_BxS = cond_src_positions_BxS.expand(2, -1)
src_padding_mask_BxS = torch.cat(
[
torch.zeros_like(cond_src_padding_mask_BxS[0:1]),
cond_src_padding_mask_BxS,
],
dim=0,
) # Uncond mask is all False (padding)
# Encoder mask needs to handle the batched input correctly
# For CFG, typically the unconditional branch attends to nothing useful from text,
# but the structure needs to be maintained. We can reuse the conditional mask structure,
# but the actual attention scores will be based on the zeroed-out unconditional input.
# Alternatively, create a specific mask for the unconditional part if needed.
# Let's expand the conditional mask for simplicity, assuming the model handles zero inputs appropriately.
enc_self_attn_mask_Bx1xSxS = cond_enc_self_attn_mask_Bx1xSxS.expand(
2, -1, -1, -1
)
logger.info("Text inputs prepared (batch size 2 for CFG).")
# --- Encoder Pass ---
logger.info("Running encoder pass...")
start_time_enc = time.time()
# Potentially use autocast for mixed precision if supported and beneficial on device
# Example: with torch.autocast(device_type=self.target_device.type, dtype=torch.bfloat16 if self.target_device.type == 'cuda' else torch.float32):
encoder_out = self.model.encoder(
x_ids=src_BxS, # Shape [2, S]
src_positions=src_positions_BxS, # Shape [2, S]
deterministic=True, # No dropout during inference
attn_mask=enc_self_attn_mask_Bx1xSxS, # Shape [2, 1, S, S]
)
logger.info(
f"Encoder pass completed in {time.time() - start_time_enc:.3f}s. Output shape: {encoder_out.shape}"
) # Shape: [2, S, E]
# --- Prepare Decoder Inputs & KV Cache ---
logger.info("Preparing decoder inputs and KV cache...")
start_time_kv = time.time()
# 3-1. Precompute Cross-Attention KV Cache (Static) from encoder output
# This cache is computed once and reused for every decoding step.
decoder_cross_attention_cache: list[KVCache] = (
self.model.decoder.precompute_cross_attention_kv(
effective_max_tokens, encoder_out, src_positions_BxS
)
)
logger.debug(
f"Precomputed cross-attention KV cache for {len(decoder_cross_attention_cache)} layers."
)
# 3-2. Initialize Self-Attention KV Cache (Dynamic, grows with each step)
decoder_self_attention_cache: list[KVCache] = []
for i in range(self.model.decoder.num_layers):
decoder_self_attention_cache.append(
KVCache(
self.config.model.decoder.gqa_query_heads,
effective_max_tokens, # Max length the cache can hold
self.config.model.decoder.gqa_head_dim,
self.target_device, # Cache tensors should be on the target device
)
)
logger.debug(
f"Initialized self-attention KV cache for {len(decoder_self_attention_cache)} layers."
)
logger.info(
f"KV cache preparation completed in {time.time() - start_time_kv:.3f}s."
)
# 3-3. Initialize Decoder Start Tokens (BOS)
# Shape [2, 1, C] (Batch=2 for cond/uncond, T=1 for first step, C=channels)
generated_tokens_history = torch.full(
(2, 1, num_channels),
fill_value=audio_bos_value,
dtype=torch.long,
device=self.target_device,
)
logger.debug(f"Initial decoder input (BOS): {generated_tokens_history.shape}")
current_step_index = (
0 # Index of the step we are currently generating (starts at 0)
)
prompt_len_inc_bos = 1 # Length of the initial prompt (just BOS initially)
# 3-4. Handle Audio Prompt (Prefill KV Cache)
if audio_prompt_path is not None:
logger.info("Processing audio prompt for prefilling...")
start_time_prompt = time.time()
try:
# Load and potentially resample audio
audio_prompt_waveform, sr = torchaudio.load(audio_prompt_path)
logger.debug(
f"Loaded audio prompt: {audio_prompt_waveform.shape}, Sample Rate: {sr}"
)
if sr != 44100:
logger.info(f"Resampling audio prompt from {sr}Hz to 44100Hz")
audio_prompt_waveform = torchaudio.functional.resample(
audio_prompt_waveform, sr, 44100
)
# Ensure correct shape [B, C, T_audio] and device
# Assuming DAC expects channels first, add batch dim
if audio_prompt_waveform.ndim == 1: # Mono
audio_prompt_waveform = audio_prompt_waveform.unsqueeze(
0
) # Add channel dim
audio_prompt_waveform = audio_prompt_waveform.unsqueeze(0).to(
self.target_device
) # Add batch dim
# Encode audio prompt to codes using DAC
logger.info("Encoding audio prompt to codes using DAC...")
if self.dac_model is None:
raise RuntimeError(
"DAC model not loaded, required for audio prompt."
)
# audio_to_codebook returns [B, T_codes, C]
audio_prompt_codes = audio_to_codebook(
self.dac_model, audio_prompt_waveform, data_config=self.config.data
) # Shape [1, T_codes, C]
logger.info(
f"Encoded audio prompt to codes: {audio_prompt_codes.shape}"
)
# Concatenate BOS tokens with prompt codes
# Expand prompt codes to batch size 2 (for cond/uncond)
generated_tokens_history = torch.cat(
[generated_tokens_history, audio_prompt_codes.expand(2, -1, -1)],
dim=1,
) # Shape [2, 1 + T_codes, C]
logger.debug(
f"Decoder input history after prompt concatenation: {generated_tokens_history.shape}"
)
prefill_len = generated_tokens_history.shape[
1
] # Length including BOS + prompt
prompt_len_inc_bos = prefill_len
logger.info(f"Prefilling KV cache with length {prefill_len}...")
# Prepare inputs for prefill forward pass
prefill_tgt_pos = (
torch.arange(prefill_len, device=self.target_device)
.unsqueeze(0)
.expand(2, -1)
) # Shape [2, T_prefill]
# Padding mask based on actual tokens (BOS and prompt codes are not PAD)
# Shape [2, T_prefill] (True where not PAD)
prefill_tgt_padding_mask = (
generated_tokens_history != audio_pad_value
).any(dim=2)
# Create attention masks for prefill
# Shape [2, 1, T_prefill, T_prefill]
prefill_self_attn_mask = self._create_attn_mask(
prefill_tgt_padding_mask,
prefill_tgt_padding_mask,
is_causal=True,
)
# Shape [2, 1, T_prefill, S]
prefill_cross_attn_mask = self._create_attn_mask(
prefill_tgt_padding_mask,
src_padding_mask_BxS,
is_causal=False,
)
# Run forward pass through decoder to fill the self-attention KV cache
# We discard the logits from prefill
_ = self.model.decoder.forward(
tgt_ids_BxTxC=generated_tokens_history, # Pass the full history [2, T_prefill, C]
encoder_out=encoder_out,
tgt_positions=prefill_tgt_pos,
src_positions=src_positions_BxS,
deterministic=True,
self_attn_mask=prefill_self_attn_mask,
cross_attn_mask=prefill_cross_attn_mask,
self_attention_cache=decoder_self_attention_cache, # Pass cache to be filled
cross_attention_cache=decoder_cross_attention_cache, # Pass precomputed cache
# prefill=True # Pass prefill flag if decoder layer uses it
)
# Update the current step index. The next token to generate is at index prefill_len.
current_step_index = prefill_len
logger.info(
f"KV cache prefilled in {time.time() - start_time_prompt:.3f}s. Next step index: {current_step_index}"
)
except Exception as e:
logger.error(f"Error processing audio prompt: {e}", exc_info=True)
raise RuntimeError("Failed to process audio prompt") from e
# --- Autoregressive Generation Loop ---
logger.info("Starting autoregressive generation loop...")
start_time_loop = time.time()
eos_detected_channel_0 = False
eos_countdown = -1 # Countdown after EOS detected in channel 0
extra_steps_after_eos = (
30 # Generate a few extra steps for delay pattern completion
)
# Pre-allocate tensor for storing *newly* generated tokens for efficiency
# We already have the prompt in generated_tokens_history
num_steps_to_generate = effective_max_tokens
newly_generated_tokens = torch.full(
(2, num_steps_to_generate, num_channels),
fill_value=audio_pad_value, # Fill with pad initially
dtype=torch.long,
device=self.target_device,
)
logger.debug(
f"Allocated tensor for newly generated tokens: {newly_generated_tokens.shape}"
)
# --- Compile decode_step if requested ---
decode_step_fn = self.model.decoder.decode_step
if use_torch_compile:
logger.info("Compiling decoder step function with torch.compile...")
try:
# Experiment with modes: "default", "reduce-overhead", "max-autotune"
decode_step_fn = torch.compile(decode_step_fn, mode="reduce-overhead")
logger.info("Decoder step function compiled.")
except Exception as e:
logger.warning(
f"torch.compile failed: {e}. Using eager mode.", exc_info=True
)
# --- Prepare static cross-attention mask for single-step decoding ---
# Query mask is always [B, 1] (True, as generated tokens are not PAD)
step_tgt_padding_mask = torch.ones(
(2, 1), dtype=torch.bool, device=self.target_device
)
# Shape [2, 1, 1, S]
step_decoder_cross_attn_mask = self._create_attn_mask(
step_tgt_padding_mask,
src_padding_mask_BxS,
is_causal=False,
)
# --- Generation Loop ---
steps_taken = 0
for step_offset in range(num_steps_to_generate):
# Absolute step index considering prompt length
current_absolute_step = current_step_index + step_offset
# Get the token IDs for the *previous* step to predict the current one
# Shape [2, 1, C]
# If step_offset is 0, use the last token from the prompt history
if step_offset == 0:
input_token_ids = generated_tokens_history[:, -1, :].unsqueeze(1)
else:
# Use the token generated in the previous iteration of this loop
input_token_ids = newly_generated_tokens[
:, step_offset - 1, :
].unsqueeze(1)
# Position ID for the current absolute step
# Shape [2, 1]
tgt_pos_Bx1 = torch.full(
(2, 1),
fill_value=current_absolute_step,
dtype=torch.long,
device=self.target_device,
)
# --- Call Decoder Step ---
# self_attn_mask is None because KV cache handles causality implicitly in single-step decoding
logits_Bx1xCxV, new_self_kv_cache_list = decode_step_fn(
tgt_ids_Bx1xC=input_token_ids,
tgt_pos_Bx1=tgt_pos_Bx1,
encoder_out=encoder_out,
self_attn_mask=None,
cross_attn_mask=step_decoder_cross_attn_mask,
self_attention_cache=decoder_self_attention_cache,
cross_attention_cache=decoder_cross_attention_cache,
) # Logits shape: [2, 1, C, V]
# --- Update Self-Attention KV Cache ---
for i, layer_cache in enumerate(decoder_self_attention_cache):
if (
new_self_kv_cache_list
and i < len(new_self_kv_cache_list)
and new_self_kv_cache_list[i] is not None
):
# new_self_kv_cache_list[i] is a tuple (k_tensor, v_tensor) for the current step
# k_tensor shape: [2, NumHeads, 1, HeadDim]
# v_tensor shape: [2, NumHeads, 1, HeadDim]
layer_cache.update_cache(
new_self_kv_cache_list[i][0], new_self_kv_cache_list[i][1]
)
else:
logger.warning(
f"Missing KV cache update for layer {i} at step {current_absolute_step}"
)
# --- Sampling ---
V = self.config.model.tgt_vocab_size
# Get logits for the generated step [2, C, V]
logits_last_BxCxV = logits_Bx1xCxV.squeeze(1)
# Separate conditional and unconditional logits
uncond_logits_CxV = logits_last_BxCxV[0, :, :] # Shape [C, V]
cond_logits_CxV = logits_last_BxCxV[1, :, :] # Shape [C, V]
# Apply Classifier-Free Guidance (CFG)
cfg_logits_CxV = cond_logits_CxV + cfg_scale * (
cond_logits_CxV - uncond_logits_CxV
) # Shape [C, V]
# --- Prevent sampling PAD/EOS/BOS tokens inappropriately ---
logits_for_sampling_CxV = (
cfg_logits_CxV.clone()
) # Clone to avoid modifying original logits
logits_for_sampling_CxV[:, audio_pad_value] = -torch.inf # Never sample PAD
logits_for_sampling_CxV[:, audio_bos_value] = (
-torch.inf
) # Never sample BOS after start
# Allow EOS only if not already detected or in countdown
if eos_detected_channel_0 and eos_countdown <= 0:
logits_for_sampling_CxV[:, audio_eos_value] = -torch.inf
# --- Sample the next token for each channel ---
pred_C = _sample_next_token(
logits_for_sampling_CxV.float(), # Ensure float32 for sampling stability
temperature=temperature,
top_p=top_p,
use_cfg_filter=use_cfg_filter,
cfg_filter_top_k=cfg_filter_top_k,
) # Shape [C]
# --- Handle Delay Pattern (Only if no audio prompt was given) ---
# If there's no prompt, the first few tokens should be BOS according to delay
# generation_step_index is how many tokens generated *after* prompt/initial BOS
generation_step_index = step_offset
if audio_prompt_path is None:
is_before_delay = generation_step_index < delay_tensor # Shape [C]
pred_C = torch.where(
is_before_delay,
torch.tensor(
audio_bos_value, device=self.target_device, dtype=torch.long
),
pred_C,
)
# --- Store the predicted token in the newly_generated_tokens tensor ---
newly_generated_tokens[:, step_offset, :] = pred_C.unsqueeze(0).expand(
2, -1
)
steps_taken += 1 # Increment steps taken in this loop
# --- EOS Handling ---
if not eos_detected_channel_0 and pred_C[0] == audio_eos_value:
logger.info(
f"EOS token detected in channel 0 at step {current_absolute_step}. Starting countdown."
)
eos_detected_channel_0 = True
eos_countdown = extra_steps_after_eos
if eos_countdown > 0:
step_after_eos = extra_steps_after_eos - eos_countdown
logger.debug(
f"EOS countdown: {eos_countdown}, Step after EOS: {step_after_eos}"
)
# Modify the token *just generated* if needed for EOS/PAD forcing
current_new_tokens = newly_generated_tokens[
:, step_offset, :
] # Shape [2, C]
for i, d in enumerate(delay_pattern):
if step_after_eos == d:
logger.debug(
f" Forcing EOS in channel {i} at step {current_absolute_step}"
)
current_new_tokens[:, i] = audio_eos_value
elif step_after_eos > d:
logger.debug(
f" Forcing PAD in channel {i} at step {current_absolute_step}"
)
current_new_tokens[:, i] = audio_pad_value
# Put the potentially modified tokens back
newly_generated_tokens[:, step_offset, :] = current_new_tokens
eos_countdown -= 1
if eos_countdown == 0:
logger.info(
f"EOS countdown finished at step {current_absolute_step}. Stopping generation."
)
break # Stop generation loop
# Check if we reached the max *new* tokens requested
if steps_taken >= num_steps_to_generate:
logger.info(
f"Reached max generation steps ({num_steps_to_generate}). Stopping."
)
break
logger.info(
f"Autoregressive loop finished after {steps_taken} steps in {time.time() - start_time_loop:.3f}s."
)
# --- Extract Generated Codes ---
# Get the conditional generation result (index 1) from the *newly* generated tokens
# Only take the number of steps actually taken
final_new_codes = newly_generated_tokens[
1, :steps_taken, :
] # Shape [T_generated, C]
logger.info(f"Extracted newly generated codes shape: {final_new_codes.shape}")
# --- Convert Codes to Audio using DAC ---
logger.info("Converting generated codes to audio using DAC...")
start_time_decode = time.time()
if self.dac_model is None:
raise RuntimeError("DAC model not loaded, required for audio decoding.")
# codebook_to_audio expects codes shape [C, T]
generated_codes_CxT = final_new_codes.transpose(0, 1) # Shape [C, T_generated]
if generated_codes_CxT.numel() == 0:
logger.warning("No new codes were generated. Returning empty audio.")
return np.array([], dtype=np.float32)
# Call the decoding function (handles delay reversal and DAC decoding)
audio_waveform = codebook_to_audio(
generated_codes_CxT,
self.dac_model,
delay_pattern,
B=1, # Batch size for decoding is 1
T=generated_codes_CxT.shape[1], # Pass the actual length of generated codes
C=num_channels,
) # Returns shape [1, T_audio] or [T_audio]
# Ensure output is a 1D numpy array on CPU
final_audio_np = audio_waveform.squeeze().cpu().numpy()
logger.info(
f"Audio decoding completed in {time.time() - start_time_decode:.3f}s. Output shape: {final_audio_np.shape}"
)
logger.info(f"Total generation time: {time.time() - start_time_gen:.3f}s")
return final_audio_np
|