File size: 14,254 Bytes
05b45a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
"""Clean Kokoro implementation with controlled resource management."""

import os
from typing import AsyncGenerator, Dict, Optional, Tuple, Union

import numpy as np
import torch
from kokoro import KModel, KPipeline
from loguru import logger

from ..core import paths
from ..core.config import settings
from ..core.model_config import model_config
from ..structures.schemas import WordTimestamp
from .base import AudioChunk, BaseModelBackend


class KokoroV1(BaseModelBackend):
    """Kokoro backend with controlled resource management."""

    def __init__(self):
        """Initialize backend with environment-based configuration."""
        super().__init__()
        # Strictly respect settings.use_gpu
        self._device = settings.get_device()
        self._model: Optional[KModel] = None
        self._pipelines: Dict[str, KPipeline] = {}  # Store pipelines by lang_code

    async def load_model(self, path: str) -> None:
        """Load pre-baked model.

        Args:
            path: Path to model file

        Raises:
            RuntimeError: If model loading fails
        """
        try:
            # Get verified model path
            model_path = await paths.get_model_path(path)
            config_path = os.path.join(os.path.dirname(model_path), "config.json")

            if not os.path.exists(config_path):
                raise RuntimeError(f"Config file not found: {config_path}")

            logger.info(f"Loading Kokoro model on {self._device}")
            logger.info(f"Config path: {config_path}")
            logger.info(f"Model path: {model_path}")

            # Load model and let KModel handle device mapping
            self._model = KModel(config=config_path, model=model_path).eval()
            # For MPS, manually move ISTFT layers to CPU while keeping rest on MPS
            if self._device == "mps":
                logger.info(
                    "Moving model to MPS device with CPU fallback for unsupported operations"
                )
                self._model = self._model.to(torch.device("mps"))
            elif self._device == "cuda":
                self._model = self._model.cuda()
            else:
                self._model = self._model.cpu()

        except FileNotFoundError as e:
            raise e
        except Exception as e:
            raise RuntimeError(f"Failed to load Kokoro model: {e}")

    def _get_pipeline(self, lang_code: str) -> KPipeline:
        """Get or create pipeline for language code.

        Args:
            lang_code: Language code to use

        Returns:
            KPipeline instance for the language
        """
        if not self._model:
            raise RuntimeError("Model not loaded")

        if lang_code not in self._pipelines:
            logger.info(f"Creating new pipeline for language code: {lang_code}")
            self._pipelines[lang_code] = KPipeline(
                lang_code=lang_code, model=self._model, device=self._device
            )
        return self._pipelines[lang_code]

    async def generate_from_tokens(
        self,
        tokens: str,
        voice: Union[str, Tuple[str, Union[torch.Tensor, str]]],
        speed: float = 1.0,
        lang_code: Optional[str] = None,
    ) -> AsyncGenerator[np.ndarray, None]:
        """Generate audio from phoneme tokens.

        Args:
            tokens: Input phoneme tokens to synthesize
            voice: Either a voice path string or a tuple of (voice_name, voice_tensor/path)
            speed: Speed multiplier
            lang_code: Optional language code override

        Yields:
            Generated audio chunks

        Raises:
            RuntimeError: If generation fails
        """
        if not self.is_loaded:
            raise RuntimeError("Model not loaded")

        try:
            # Memory management for GPU
            if self._device == "cuda":
                if self._check_memory():
                    self._clear_memory()

            # Handle voice input
            voice_path: str
            voice_name: str
            if isinstance(voice, tuple):
                voice_name, voice_data = voice
                if isinstance(voice_data, str):
                    voice_path = voice_data
                else:
                    # Save tensor to temporary file
                    import tempfile

                    temp_dir = tempfile.gettempdir()
                    voice_path = os.path.join(temp_dir, f"{voice_name}.pt")
                    # Save tensor with CPU mapping for portability
                    torch.save(voice_data.cpu(), voice_path)
            else:
                voice_path = voice
                voice_name = os.path.splitext(os.path.basename(voice_path))[0]

            # Load voice tensor with proper device mapping
            voice_tensor = await paths.load_voice_tensor(
                voice_path, device=self._device
            )
            # Save back to a temporary file with proper device mapping
            import tempfile

            temp_dir = tempfile.gettempdir()
            temp_path = os.path.join(
                temp_dir, f"temp_voice_{os.path.basename(voice_path)}"
            )
            await paths.save_voice_tensor(voice_tensor, temp_path)
            voice_path = temp_path

            # Use provided lang_code, settings voice code override, or first letter of voice name
            if lang_code:  # api is given priority
                pipeline_lang_code = lang_code
            elif settings.default_voice_code:  # settings is next priority
                pipeline_lang_code = settings.default_voice_code
            else:  # voice name is default/fallback
                pipeline_lang_code = voice_name[0].lower()

            pipeline = self._get_pipeline(pipeline_lang_code)

            logger.debug(
                f"Generating audio from tokens with lang_code '{pipeline_lang_code}': '{tokens[:100]}{'...' if len(tokens) > 100 else ''}'"
            )
            for result in pipeline.generate_from_tokens(
                tokens=tokens, voice=voice_path, speed=speed, model=self._model
            ):
                if result.audio is not None:
                    logger.debug(f"Got audio chunk with shape: {result.audio.shape}")
                    yield result.audio.numpy()
                else:
                    logger.warning("No audio in chunk")

        except Exception as e:
            logger.error(f"Generation failed: {e}")
            if (
                self._device == "cuda"
                and model_config.pytorch_gpu.retry_on_oom
                and "out of memory" in str(e).lower()
            ):
                self._clear_memory()
                async for chunk in self.generate_from_tokens(
                    tokens, voice, speed, lang_code
                ):
                    yield chunk
            raise

    async def generate(
        self,
        text: str,
        voice: Union[str, Tuple[str, Union[torch.Tensor, str]]],
        speed: float = 1.0,
        lang_code: Optional[str] = None,
        return_timestamps: Optional[bool] = False,
    ) -> AsyncGenerator[AudioChunk, None]:
        """Generate audio using model.

        Args:
            text: Input text to synthesize
            voice: Either a voice path string or a tuple of (voice_name, voice_tensor/path)
            speed: Speed multiplier
            lang_code: Optional language code override

        Yields:
            Generated audio chunks

        Raises:
            RuntimeError: If generation fails
        """
        if not self.is_loaded:
            raise RuntimeError("Model not loaded")
        try:
            # Memory management for GPU
            if self._device == "cuda":
                if self._check_memory():
                    self._clear_memory()

            # Handle voice input
            voice_path: str
            voice_name: str
            if isinstance(voice, tuple):
                voice_name, voice_data = voice
                if isinstance(voice_data, str):
                    voice_path = voice_data
                else:
                    # Save tensor to temporary file
                    import tempfile

                    temp_dir = tempfile.gettempdir()
                    voice_path = os.path.join(temp_dir, f"{voice_name}.pt")
                    # Save tensor with CPU mapping for portability
                    torch.save(voice_data.cpu(), voice_path)
            else:
                voice_path = voice
                voice_name = os.path.splitext(os.path.basename(voice_path))[0]

            # Load voice tensor with proper device mapping
            voice_tensor = await paths.load_voice_tensor(
                voice_path, device=self._device
            )
            # Save back to a temporary file with proper device mapping
            import tempfile

            temp_dir = tempfile.gettempdir()
            temp_path = os.path.join(
                temp_dir, f"temp_voice_{os.path.basename(voice_path)}"
            )
            await paths.save_voice_tensor(voice_tensor, temp_path)
            voice_path = temp_path

            # Use provided lang_code, settings voice code override, or first letter of voice name
            pipeline_lang_code = (
                lang_code
                if lang_code
                else (
                    settings.default_voice_code
                    if settings.default_voice_code
                    else voice_name[0].lower()
                )
            )
            pipeline = self._get_pipeline(pipeline_lang_code)

            logger.debug(
                f"Generating audio for text with lang_code '{pipeline_lang_code}': '{text[:100]}{'...' if len(text) > 100 else ''}'"
            )
            for result in pipeline(
                text, voice=voice_path, speed=speed, model=self._model
            ):
                if result.audio is not None:
                    logger.debug(f"Got audio chunk with shape: {result.audio.shape}")
                    word_timestamps = None
                    if (
                        return_timestamps
                        and hasattr(result, "tokens")
                        and result.tokens
                    ):
                        word_timestamps = []
                        current_offset = 0.0
                        logger.debug(
                            f"Processing chunk timestamps with {len(result.tokens)} tokens"
                        )
                        if result.pred_dur is not None:
                            try:
                                # Add timestamps with offset
                                for token in result.tokens:
                                    if not all(
                                        hasattr(token, attr)
                                        for attr in [
                                            "text",
                                            "start_ts",
                                            "end_ts",
                                        ]
                                    ):
                                        continue
                                    if not token.text or not token.text.strip():
                                        continue

                                    start_time = float(token.start_ts) + current_offset
                                    end_time = float(token.end_ts) + current_offset
                                    word_timestamps.append(
                                        WordTimestamp(
                                            word=str(token.text).strip(),
                                            start_time=start_time,
                                            end_time=end_time,
                                        )
                                    )
                                    logger.debug(
                                        f"Added timestamp for word '{token.text}': {start_time:.3f}s - {end_time:.3f}s"
                                    )

                            except Exception as e:
                                logger.error(
                                    f"Failed to process timestamps for chunk: {e}"
                                )

                    yield AudioChunk(
                        result.audio.numpy(), word_timestamps=word_timestamps
                    )
                else:
                    logger.warning("No audio in chunk")

        except Exception as e:
            logger.error(f"Generation failed: {e}")
            if (
                self._device == "cuda"
                and model_config.pytorch_gpu.retry_on_oom
                and "out of memory" in str(e).lower()
            ):
                self._clear_memory()
                async for chunk in self.generate(text, voice, speed, lang_code):
                    yield chunk
            raise

    def _check_memory(self) -> bool:
        """Check if memory usage is above threshold."""
        if self._device == "cuda":
            memory_gb = torch.cuda.memory_allocated() / 1e9
            return memory_gb > model_config.pytorch_gpu.memory_threshold
        # MPS doesn't provide memory management APIs
        return False

    def _clear_memory(self) -> None:
        """Clear device memory."""
        if self._device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        elif self._device == "mps":
            # Empty cache if available (future-proofing)
            if hasattr(torch.mps, "empty_cache"):
                torch.mps.empty_cache()

    def unload(self) -> None:
        """Unload model and free resources."""
        if self._model is not None:
            del self._model
            self._model = None
        for pipeline in self._pipelines.values():
            del pipeline
        self._pipelines.clear()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            torch.cuda.synchronize()

    @property
    def is_loaded(self) -> bool:
        """Check if model is loaded."""
        return self._model is not None

    @property
    def device(self) -> str:
        """Get device model is running on."""
        return self._device