Spaces:
Runtime error
Runtime error
File size: 15,660 Bytes
05b45a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import base64
import json
import os
import re
from pathlib import Path
from typing import AsyncGenerator, List, Tuple, Union
import numpy as np
import torch
from fastapi import APIRouter, Depends, Header, HTTPException, Request, Response
from fastapi.responses import FileResponse, JSONResponse, StreamingResponse
from kokoro import KPipeline
from loguru import logger
from ..core.config import settings
from ..inference.base import AudioChunk
from ..services.audio import AudioNormalizer, AudioService
from ..services.streaming_audio_writer import StreamingAudioWriter
from ..services.temp_manager import TempFileWriter
from ..services.text_processing import smart_split
from ..services.tts_service import TTSService
from ..structures import CaptionedSpeechRequest, CaptionedSpeechResponse, WordTimestamp
from ..structures.custom_responses import JSONStreamingResponse
from ..structures.text_schemas import (
GenerateFromPhonemesRequest,
PhonemeRequest,
PhonemeResponse,
)
from .openai_compatible import process_and_validate_voices, stream_audio_chunks
router = APIRouter(tags=["text processing"])
async def get_tts_service() -> TTSService:
"""Dependency to get TTSService instance"""
return (
await TTSService.create()
) # Create service with properly initialized managers
@router.post("/dev/phonemize", response_model=PhonemeResponse)
async def phonemize_text(request: PhonemeRequest) -> PhonemeResponse:
"""Convert text to phonemes using Kokoro's quiet mode.
Args:
request: Request containing text and language
Returns:
Phonemes and token IDs
"""
try:
if not request.text:
raise ValueError("Text cannot be empty")
# Initialize Kokoro pipeline in quiet mode (no model)
pipeline = KPipeline(lang_code=request.language, model=False)
# Get first result from pipeline (we only need one since we're not chunking)
for result in pipeline(request.text):
# result.graphemes = original text
# result.phonemes = phonemized text
# result.tokens = token objects (if available)
return PhonemeResponse(phonemes=result.phonemes, tokens=[])
raise ValueError("Failed to generate phonemes")
except ValueError as e:
logger.error(f"Error in phoneme generation: {str(e)}")
raise HTTPException(
status_code=500, detail={"error": "Server error", "message": str(e)}
)
except Exception as e:
logger.error(f"Error in phoneme generation: {str(e)}")
raise HTTPException(
status_code=500, detail={"error": "Server error", "message": str(e)}
)
@router.post("/dev/generate_from_phonemes")
async def generate_from_phonemes(
request: GenerateFromPhonemesRequest,
client_request: Request,
tts_service: TTSService = Depends(get_tts_service),
) -> StreamingResponse:
"""Generate audio directly from phonemes using Kokoro's phoneme format"""
try:
# Basic validation
if not isinstance(request.phonemes, str):
raise ValueError("Phonemes must be a string")
if not request.phonemes:
raise ValueError("Phonemes cannot be empty")
# Create streaming audio writer and normalizer
writer = StreamingAudioWriter(format="wav", sample_rate=24000, channels=1)
normalizer = AudioNormalizer()
async def generate_chunks():
try:
# Generate audio from phonemes
chunk_audio, _ = await tts_service.generate_from_phonemes(
phonemes=request.phonemes, # Pass complete phoneme string
voice=request.voice,
speed=1.0,
)
if chunk_audio is not None:
# Normalize audio before writing
normalized_audio = await normalizer.normalize(chunk_audio)
# Write chunk and yield bytes
chunk_bytes = writer.write_chunk(normalized_audio)
if chunk_bytes:
yield chunk_bytes
# Finalize and yield remaining bytes
final_bytes = writer.write_chunk(finalize=True)
if final_bytes:
yield final_bytes
else:
raise ValueError("Failed to generate audio data")
except Exception as e:
logger.error(f"Error in audio generation: {str(e)}")
# Clean up writer on error
writer.close()
# Re-raise the original exception
raise
return StreamingResponse(
generate_chunks(),
media_type="audio/wav",
headers={
"Content-Disposition": "attachment; filename=speech.wav",
"X-Accel-Buffering": "no",
"Cache-Control": "no-cache",
"Transfer-Encoding": "chunked",
},
)
except ValueError as e:
logger.error(f"Error generating audio: {str(e)}")
raise HTTPException(
status_code=400,
detail={
"error": "validation_error",
"message": str(e),
"type": "invalid_request_error",
},
)
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
raise HTTPException(
status_code=500,
detail={
"error": "processing_error",
"message": str(e),
"type": "server_error",
},
)
@router.post("/dev/captioned_speech")
async def create_captioned_speech(
request: CaptionedSpeechRequest,
client_request: Request,
x_raw_response: str = Header(None, alias="x-raw-response"),
tts_service: TTSService = Depends(get_tts_service),
):
"""Generate audio with word-level timestamps using streaming approach"""
try:
# model_name = get_model_name(request.model)
tts_service = await get_tts_service()
voice_name = await process_and_validate_voices(request.voice, tts_service)
# Set content type based on format
content_type = {
"mp3": "audio/mpeg",
"opus": "audio/opus",
"m4a": "audio/mp4",
"flac": "audio/flac",
"wav": "audio/wav",
"pcm": "audio/pcm",
}.get(request.response_format, f"audio/{request.response_format}")
writer = StreamingAudioWriter(request.response_format, sample_rate=24000)
# Check if streaming is requested (default for OpenAI client)
if request.stream:
# Create generator but don't start it yet
generator = stream_audio_chunks(
tts_service, request, client_request, writer
)
# If download link requested, wrap generator with temp file writer
if request.return_download_link:
from ..services.temp_manager import TempFileWriter
temp_writer = TempFileWriter(request.response_format)
await temp_writer.__aenter__() # Initialize temp file
# Get download path immediately after temp file creation
download_path = temp_writer.download_path
# Create response headers with download path
headers = {
"Content-Disposition": f"attachment; filename=speech.{request.response_format}",
"X-Accel-Buffering": "no",
"Cache-Control": "no-cache",
"Transfer-Encoding": "chunked",
"X-Download-Path": download_path,
}
# Create async generator for streaming
async def dual_output():
try:
# Write chunks to temp file and stream
async for chunk_data in generator:
# The timestamp acumulator is only used when word level time stamps are generated but no audio is returned.
timestamp_acumulator = []
if chunk_data.output: # Skip empty chunks
await temp_writer.write(chunk_data.output)
base64_chunk = base64.b64encode(
chunk_data.output
).decode("utf-8")
# Add any chunks that may be in the acumulator into the return word_timestamps
chunk_data.word_timestamps = (
timestamp_acumulator + chunk_data.word_timestamps
)
timestamp_acumulator = []
yield CaptionedSpeechResponse(
audio=base64_chunk,
audio_format=content_type,
timestamps=chunk_data.word_timestamps,
)
else:
if (
chunk_data.word_timestamps is not None
and len(chunk_data.word_timestamps) > 0
):
timestamp_acumulator += chunk_data.word_timestamps
# Finalize the temp file
await temp_writer.finalize()
except Exception as e:
logger.error(f"Error in dual output streaming: {e}")
await temp_writer.__aexit__(type(e), e, e.__traceback__)
raise
finally:
# Ensure temp writer is closed
if not temp_writer._finalized:
await temp_writer.__aexit__(None, None, None)
writer.close()
# Stream with temp file writing
return JSONStreamingResponse(
dual_output(), media_type="application/json", headers=headers
)
async def single_output():
try:
# The timestamp acumulator is only used when word level time stamps are generated but no audio is returned.
timestamp_acumulator = []
# Stream chunks
async for chunk_data in generator:
if chunk_data.output: # Skip empty chunks
# Encode the chunk bytes into base 64
base64_chunk = base64.b64encode(chunk_data.output).decode(
"utf-8"
)
# Add any chunks that may be in the acumulator into the return word_timestamps
if chunk_data.word_timestamps != None:
chunk_data.word_timestamps = (
timestamp_acumulator + chunk_data.word_timestamps
)
else:
chunk_data.word_timestamps = []
timestamp_acumulator = []
yield CaptionedSpeechResponse(
audio=base64_chunk,
audio_format=content_type,
timestamps=chunk_data.word_timestamps,
)
else:
if (
chunk_data.word_timestamps is not None
and len(chunk_data.word_timestamps) > 0
):
timestamp_acumulator += chunk_data.word_timestamps
except Exception as e:
logger.error(f"Error in single output streaming: {e}")
writer.close()
raise
# Standard streaming without download link
return JSONStreamingResponse(
single_output(),
media_type="application/json",
headers={
"Content-Disposition": f"attachment; filename=speech.{request.response_format}",
"X-Accel-Buffering": "no",
"Cache-Control": "no-cache",
"Transfer-Encoding": "chunked",
},
)
else:
# Generate complete audio using public interface
audio_data = await tts_service.generate_audio(
text=request.input,
voice=voice_name,
writer=writer,
speed=request.speed,
return_timestamps=request.return_timestamps,
normalization_options=request.normalization_options,
lang_code=request.lang_code,
)
audio_data = await AudioService.convert_audio(
audio_data,
request.response_format,
writer,
is_last_chunk=False,
trim_audio=False,
)
# Convert to requested format with proper finalization
final = await AudioService.convert_audio(
AudioChunk(np.array([], dtype=np.int16)),
request.response_format,
writer,
is_last_chunk=True,
)
output = audio_data.output + final.output
base64_output = base64.b64encode(output).decode("utf-8")
content = CaptionedSpeechResponse(
audio=base64_output,
audio_format=content_type,
timestamps=audio_data.word_timestamps,
).model_dump()
writer.close()
return JSONResponse(
content=content,
media_type="application/json",
headers={
"Content-Disposition": f"attachment; filename=speech.{request.response_format}",
"Cache-Control": "no-cache", # Prevent caching
},
)
except ValueError as e:
# Handle validation errors
logger.warning(f"Invalid request: {str(e)}")
try:
writer.close()
except:
pass
raise HTTPException(
status_code=400,
detail={
"error": "validation_error",
"message": str(e),
"type": "invalid_request_error",
},
)
except RuntimeError as e:
# Handle runtime/processing errors
logger.error(f"Processing error: {str(e)}")
try:
writer.close()
except:
pass
raise HTTPException(
status_code=500,
detail={
"error": "processing_error",
"message": str(e),
"type": "server_error",
},
)
except Exception as e:
# Handle unexpected errors
logger.error(f"Unexpected error in captioned speech generation: {str(e)}")
try:
writer.close()
except:
pass
raise HTTPException(
status_code=500,
detail={
"error": "processing_error",
"message": str(e),
"type": "server_error",
},
)
|