Spaces:
Runtime error
Runtime error
File size: 9,730 Bytes
05b45a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import argparse
from typing import Any, Dict
from pathlib import Path
import numpy as np
import soundfile as sf
from tqdm import tqdm
def validate_tts(wav_path: str) -> dict:
"""
Validation checks for TTS-generated audio files to detect common artifacts.
"""
try:
# Load and process audio
audio, sr = sf.read(wav_path)
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
duration = len(audio) / sr
issues = []
# Basic quality checks
abs_audio = np.abs(audio)
stats = {
"rms": float(np.sqrt(np.mean(audio**2))),
"peak": float(np.max(abs_audio)),
"dc_offset": float(np.mean(audio)),
}
clip_count = np.sum(abs_audio >= 0.99)
clip_percent = (clip_count / len(audio)) * 100
if duration < 0.1:
issues.append(
"WARNING: Audio is suspiciously short - possible failed generation"
)
if stats["peak"] >= 1.0:
if clip_percent > 1.0:
issues.append(
f"WARNING: Significant clipping detected ({clip_percent:.2e}% of samples)"
)
elif clip_percent > 0.01:
issues.append(
f"INFO: Minor peak limiting detected ({clip_percent:.2e}% of samples)"
)
if stats["rms"] < 0.01:
issues.append("WARNING: Audio is very quiet - possible failed generation")
if abs(stats["dc_offset"]) > 0.1:
issues.append(f"WARNING: High DC offset ({stats['dc_offset']:.3f})")
# Check for long silence gaps
eps = np.finfo(float).eps
db = 20 * np.log10(abs_audio + eps)
silence_threshold = -45 # dB
min_silence = 2.0 # seconds
window_size = int(min_silence * sr)
silence_count = 0
last_silence = -1
start_idx = int(0.2 * sr) # Skip first 0.2s
for i in tqdm(
range(start_idx, len(db) - window_size, window_size),
desc="Checking for silence",
):
window = db[i : i + window_size]
if np.mean(window) < silence_threshold:
silent_ratio = np.mean(window < silence_threshold)
if silent_ratio > 0.9:
if last_silence == -1 or (i / sr - last_silence) > 2.0:
silence_count += 1
last_silence = i / sr
issues.append(
f"WARNING: Long silence detected at {i/sr:.2f}s (duration: {min_silence:.1f}s)"
)
if silence_count > 2:
issues.append(
f"WARNING: Multiple long silences found ({silence_count} total)"
)
# Detect audio artifacts
diff = np.diff(audio)
abs_diff = np.abs(diff)
window_size = min(int(0.005 * sr), 256)
window = np.ones(window_size) / window_size
local_avg_diff = np.convolve(abs_diff, window, mode="same")
spikes = (abs_diff > (10 * local_avg_diff)) & (abs_diff > 0.1)
artifact_indices = np.nonzero(spikes)[0]
artifacts = []
if len(artifact_indices) > 0:
gaps = np.diff(artifact_indices)
min_gap = int(0.005 * sr)
break_points = np.nonzero(gaps > min_gap)[0] + 1
groups = np.split(artifact_indices, break_points)
for group in groups:
if len(group) >= 5:
severity = np.max(abs_diff[group])
if severity > 0.2:
center_idx = group[len(group) // 2]
artifacts.append(
{
"time": float(
center_idx / sr
), # Ensure float for consistent timing
"severity": float(severity),
}
)
issues.append(
f"WARNING: Audio discontinuity at {center_idx/sr:.3f}s "
f"(severity: {severity:.3f})"
)
# Check for repeated speech segments
for chunk_duration in tqdm(
[0.5, 2.5, 5.0, 10.0], desc="Checking for repeated speech"
):
chunk_size = int(chunk_duration * sr)
overlap = int(0.2 * chunk_size)
for i in range(0, len(audio) - 2 * chunk_size, overlap):
chunk1 = audio[i : i + chunk_size]
chunk2 = audio[i + chunk_size : i + 2 * chunk_size]
if np.mean(np.abs(chunk1)) < 0.01 or np.mean(np.abs(chunk2)) < 0.01:
continue
try:
correlation = np.corrcoef(chunk1, chunk2)[0, 1]
if not np.isnan(correlation) and correlation > 0.92:
issues.append(
f"WARNING: Possible repeated speech at {i/sr:.1f}s "
f"(~{int(chunk_duration*160/60):d} words, correlation: {correlation:.3f})"
)
break
except:
continue
return {
"file": wav_path,
"duration": f"{duration:.2f}s",
"sample_rate": sr,
"peak_amplitude": f"{stats['peak']:.3f}",
"rms_level": f"{stats['rms']:.3f}",
"dc_offset": f"{stats['dc_offset']:.3f}",
"artifact_count": len(artifacts),
"artifact_locations": [a["time"] for a in artifacts],
"artifact_severities": [a["severity"] for a in artifacts],
"issues": issues,
"valid": len(issues) == 0,
}
except Exception as e:
return {"file": wav_path, "error": str(e), "valid": False}
def generate_analysis_plots(
wav_path: str, output_dir: str, validation_result: Dict[str, Any]
):
"""
Generate analysis plots for audio file with time-aligned visualizations.
"""
import matplotlib.pyplot as plt
from scipy.signal import spectrogram
# Load audio
audio, sr = sf.read(wav_path)
if len(audio.shape) > 1:
audio = np.mean(audio, axis=1)
# Create figure with shared x-axis
fig = plt.figure(figsize=(15, 8))
gs = plt.GridSpec(2, 1, height_ratios=[1.2, 0.8], hspace=0.1)
ax1 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[1], sharex=ax1)
# Calculate spectrogram
nperseg = 2048
noverlap = 1536
f, t, Sxx = spectrogram(
audio, sr, nperseg=nperseg, noverlap=noverlap, window="hann", scaling="spectrum"
)
# Plot spectrogram
im = ax1.pcolormesh(
t,
f,
10 * np.log10(Sxx + 1e-10),
shading="gouraud",
cmap="viridis",
vmin=-100,
vmax=-20,
)
ax1.set_ylabel("Frequency [Hz]", fontsize=10)
cbar = plt.colorbar(im, ax=ax1, label="dB")
ax1.set_title("Spectrogram", pad=10, fontsize=12)
# Plot waveform with exact time alignment
times = np.arange(len(audio)) / sr
ax2.plot(times, audio, color="#2E5596", alpha=0.7, linewidth=0.5, label="Audio")
ax2.set_ylabel("Amplitude", fontsize=10)
ax2.set_xlabel("Time [sec]", fontsize=10)
ax2.grid(True, alpha=0.2)
# Add artifact markers
if (
"artifact_locations" in validation_result
and validation_result["artifact_locations"]
):
for loc in validation_result["artifact_locations"]:
ax1.axvline(x=loc, color="red", alpha=0.7, linewidth=2)
ax2.axvline(
x=loc, color="red", alpha=0.7, linewidth=2, label="Detected Artifacts"
)
# Add legend to both plots
if len(validation_result["artifact_locations"]) > 0:
ax1.plot([], [], color="red", linewidth=2, label="Detected Artifacts")
ax1.legend(loc="upper right", fontsize=8)
# Only add unique labels to legend
handles, labels = ax2.get_legend_handles_labels()
unique_labels = dict(zip(labels, handles))
ax2.legend(
unique_labels.values(),
unique_labels.keys(),
loc="upper right",
fontsize=8,
)
# Set common x limits
xlim = (0, len(audio) / sr)
ax1.set_xlim(xlim)
ax2.set_xlim(xlim)
og_filename = Path(wav_path).name.split(".")[0]
# Save plot
plt.savefig(
Path(output_dir) / f"{og_filename}_audio_analysis.png",
dpi=300,
bbox_inches="tight",
)
plt.close()
if __name__ == "__main__":
wav_file = r"C:\Users\jerem\Desktop\Kokoro-FastAPI\examples\assorted_checks\benchmarks\output_audio\chunk_600_tokens.wav"
silent = False
print(f"\n\n Processing:\n\t{wav_file}")
result = validate_tts(wav_file)
if not silent:
wav_root_dir = Path(wav_file).parent
generate_analysis_plots(wav_file, wav_root_dir, result)
print(f"\nValidating: {result['file']}")
if "error" in result:
print(f"Error: {result['error']}")
else:
print(f"Duration: {result['duration']}")
print(f"Sample Rate: {result['sample_rate']} Hz")
print(f"Peak Amplitude: {result['peak_amplitude']}")
print(f"RMS Level: {result['rms_level']}")
print(f"DC Offset: {result['dc_offset']}")
print(f"Detected Artifacts: {result['artifact_count']}")
if result["issues"]:
print("\nIssues Found:")
for issue in result["issues"]:
print(f"- {issue}")
else:
print("\nNo issues found")
|