Michael Hu
initial check in
05b45a5
"""TTS service using model and voice managers."""
import asyncio
import os
import re
import tempfile
import time
from typing import AsyncGenerator, List, Optional, Tuple, Union
import numpy as np
import torch
from kokoro import KPipeline
from loguru import logger
from ..core.config import settings
from ..inference.base import AudioChunk
from ..inference.kokoro_v1 import KokoroV1
from ..inference.model_manager import get_manager as get_model_manager
from ..inference.voice_manager import get_manager as get_voice_manager
from ..structures.schemas import NormalizationOptions
from .audio import AudioNormalizer, AudioService
from .streaming_audio_writer import StreamingAudioWriter
from .text_processing import tokenize
from .text_processing.text_processor import process_text_chunk, smart_split
class TTSService:
"""Text-to-speech service."""
# Limit concurrent chunk processing
_chunk_semaphore = asyncio.Semaphore(4)
def __init__(self, output_dir: str = None):
"""Initialize service."""
self.output_dir = output_dir
self.model_manager = None
self._voice_manager = None
@classmethod
async def create(cls, output_dir: str = None) -> "TTSService":
"""Create and initialize TTSService instance."""
service = cls(output_dir)
service.model_manager = await get_model_manager()
service._voice_manager = await get_voice_manager()
return service
async def _process_chunk(
self,
chunk_text: str,
tokens: List[int],
voice_name: str,
voice_path: str,
speed: float,
writer: StreamingAudioWriter,
output_format: Optional[str] = None,
is_first: bool = False,
is_last: bool = False,
normalizer: Optional[AudioNormalizer] = None,
lang_code: Optional[str] = None,
return_timestamps: Optional[bool] = False,
) -> AsyncGenerator[AudioChunk, None]:
"""Process tokens into audio."""
async with self._chunk_semaphore:
try:
# Handle stream finalization
if is_last:
# Skip format conversion for raw audio mode
if not output_format:
yield AudioChunk(np.array([], dtype=np.int16), output=b"")
return
chunk_data = await AudioService.convert_audio(
AudioChunk(
np.array([], dtype=np.float32)
), # Dummy data for type checking
output_format,
writer,
speed,
"",
normalizer=normalizer,
is_last_chunk=True,
)
yield chunk_data
return
# Skip empty chunks
if not tokens and not chunk_text:
return
# Get backend
backend = self.model_manager.get_backend()
# Generate audio using pre-warmed model
if isinstance(backend, KokoroV1):
chunk_index = 0
# For Kokoro V1, pass text and voice info with lang_code
async for chunk_data in self.model_manager.generate(
chunk_text,
(voice_name, voice_path),
speed=speed,
lang_code=lang_code,
return_timestamps=return_timestamps,
):
# For streaming, convert to bytes
if output_format:
try:
chunk_data = await AudioService.convert_audio(
chunk_data,
output_format,
writer,
speed,
chunk_text,
is_last_chunk=is_last,
normalizer=normalizer,
)
yield chunk_data
except Exception as e:
logger.error(f"Failed to convert audio: {str(e)}")
else:
chunk_data = AudioService.trim_audio(
chunk_data, chunk_text, speed, is_last, normalizer
)
yield chunk_data
chunk_index += 1
else:
# For legacy backends, load voice tensor
voice_tensor = await self._voice_manager.load_voice(
voice_name, device=backend.device
)
chunk_data = await self.model_manager.generate(
tokens,
voice_tensor,
speed=speed,
return_timestamps=return_timestamps,
)
if chunk_data.audio is None:
logger.error("Model generated None for audio chunk")
return
if len(chunk_data.audio) == 0:
logger.error("Model generated empty audio chunk")
return
# For streaming, convert to bytes
if output_format:
try:
chunk_data = await AudioService.convert_audio(
chunk_data,
output_format,
writer,
speed,
chunk_text,
normalizer=normalizer,
is_last_chunk=is_last,
)
yield chunk_data
except Exception as e:
logger.error(f"Failed to convert audio: {str(e)}")
else:
trimmed = AudioService.trim_audio(
chunk_data, chunk_text, speed, is_last, normalizer
)
yield trimmed
except Exception as e:
logger.error(f"Failed to process tokens: {str(e)}")
async def _load_voice_from_path(self, path: str, weight: float):
# Check if the path is None and raise a ValueError if it is not
if not path:
raise ValueError(f"Voice not found at path: {path}")
logger.debug(f"Loading voice tensor from path: {path}")
return torch.load(path, map_location="cpu") * weight
async def _get_voices_path(self, voice: str) -> Tuple[str, str]:
"""Get voice path, handling combined voices.
Args:
voice: Voice name or combined voice names (e.g., 'af_jadzia+af_jessica')
Returns:
Tuple of (voice name to use, voice path to use)
Raises:
RuntimeError: If voice not found
"""
try:
# Split the voice on + and - and ensure that they get added to the list eg: hi+bob = ["hi","+","bob"]
split_voice = re.split(r"([-+])", voice)
# If it is only once voice there is no point in loading it up, doing nothing with it, then saving it
if len(split_voice) == 1:
# Since its a single voice the only time that the weight would matter is if voice_weight_normalization is off
if (
"(" not in voice and ")" not in voice
) or settings.voice_weight_normalization == True:
path = await self._voice_manager.get_voice_path(voice)
if not path:
raise RuntimeError(f"Voice not found: {voice}")
logger.debug(f"Using single voice path: {path}")
return voice, path
total_weight = 0
for voice_index in range(0, len(split_voice), 2):
voice_object = split_voice[voice_index]
if "(" in voice_object and ")" in voice_object:
voice_name = voice_object.split("(")[0].strip()
voice_weight = float(voice_object.split("(")[1].split(")")[0])
else:
voice_name = voice_object
voice_weight = 1
total_weight += voice_weight
split_voice[voice_index] = (voice_name, voice_weight)
# If voice_weight_normalization is false prevent normalizing the weights by setting the total_weight to 1 so it divides each weight by 1
if settings.voice_weight_normalization == False:
total_weight = 1
# Load the first voice as the starting point for voices to be combined onto
path = await self._voice_manager.get_voice_path(split_voice[0][0])
combined_tensor = await self._load_voice_from_path(
path, split_voice[0][1] / total_weight
)
# Loop through each + or - in split_voice so they can be applied to combined voice
for operation_index in range(1, len(split_voice) - 1, 2):
# Get the voice path of the voice 1 index ahead of the operator
path = await self._voice_manager.get_voice_path(
split_voice[operation_index + 1][0]
)
voice_tensor = await self._load_voice_from_path(
path, split_voice[operation_index + 1][1] / total_weight
)
# Either add or subtract the voice from the current combined voice
if split_voice[operation_index] == "+":
combined_tensor += voice_tensor
else:
combined_tensor -= voice_tensor
# Save the new combined voice so it can be loaded latter
temp_dir = tempfile.gettempdir()
combined_path = os.path.join(temp_dir, f"{voice}.pt")
logger.debug(f"Saving combined voice to: {combined_path}")
torch.save(combined_tensor, combined_path)
return voice, combined_path
except Exception as e:
logger.error(f"Failed to get voice path: {e}")
raise
async def generate_audio_stream(
self,
text: str,
voice: str,
writer: StreamingAudioWriter,
speed: float = 1.0,
output_format: str = "wav",
lang_code: Optional[str] = None,
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
return_timestamps: Optional[bool] = False,
) -> AsyncGenerator[AudioChunk, None]:
"""Generate and stream audio chunks."""
stream_normalizer = AudioNormalizer()
chunk_index = 0
current_offset = 0.0
try:
# Get backend
backend = self.model_manager.get_backend()
# Get voice path, handling combined voices
voice_name, voice_path = await self._get_voices_path(voice)
logger.debug(f"Using voice path: {voice_path}")
# Use provided lang_code or determine from voice name
pipeline_lang_code = lang_code if lang_code else voice[:1].lower()
logger.info(
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in audio stream"
)
# Process text in chunks with smart splitting
async for chunk_text, tokens in smart_split(
text,
lang_code=pipeline_lang_code,
normalization_options=normalization_options,
):
try:
# Process audio for chunk
async for chunk_data in self._process_chunk(
chunk_text, # Pass text for Kokoro V1
tokens, # Pass tokens for legacy backends
voice_name, # Pass voice name
voice_path, # Pass voice path
speed,
writer,
output_format,
is_first=(chunk_index == 0),
is_last=False, # We'll update the last chunk later
normalizer=stream_normalizer,
lang_code=pipeline_lang_code, # Pass lang_code
return_timestamps=return_timestamps,
):
if chunk_data.word_timestamps is not None:
for timestamp in chunk_data.word_timestamps:
timestamp.start_time += current_offset
timestamp.end_time += current_offset
current_offset += len(chunk_data.audio) / 24000
if chunk_data.output is not None:
yield chunk_data
else:
logger.warning(
f"No audio generated for chunk: '{chunk_text[:100]}...'"
)
chunk_index += 1
except Exception as e:
logger.error(
f"Failed to process audio for chunk: '{chunk_text[:100]}...'. Error: {str(e)}"
)
continue
# Only finalize if we successfully processed at least one chunk
if chunk_index > 0:
try:
# Empty tokens list to finalize audio
async for chunk_data in self._process_chunk(
"", # Empty text
[], # Empty tokens
voice_name,
voice_path,
speed,
writer,
output_format,
is_first=False,
is_last=True, # Signal this is the last chunk
normalizer=stream_normalizer,
lang_code=pipeline_lang_code, # Pass lang_code
):
if chunk_data.output is not None:
yield chunk_data
except Exception as e:
logger.error(f"Failed to finalize audio stream: {str(e)}")
except Exception as e:
logger.error(f"Error in phoneme audio generation: {str(e)}")
raise e
async def generate_audio(
self,
text: str,
voice: str,
writer: StreamingAudioWriter,
speed: float = 1.0,
return_timestamps: bool = False,
normalization_options: Optional[NormalizationOptions] = NormalizationOptions(),
lang_code: Optional[str] = None,
) -> AudioChunk:
"""Generate complete audio for text using streaming internally."""
audio_data_chunks = []
try:
async for audio_stream_data in self.generate_audio_stream(
text,
voice,
writer,
speed=speed,
normalization_options=normalization_options,
return_timestamps=return_timestamps,
lang_code=lang_code,
output_format=None,
):
if len(audio_stream_data.audio) > 0:
audio_data_chunks.append(audio_stream_data)
combined_audio_data = AudioChunk.combine(audio_data_chunks)
return combined_audio_data
except Exception as e:
logger.error(f"Error in audio generation: {str(e)}")
raise
async def combine_voices(self, voices: List[str]) -> torch.Tensor:
"""Combine multiple voices.
Returns:
Combined voice tensor
"""
return await self._voice_manager.combine_voices(voices)
async def list_voices(self) -> List[str]:
"""List available voices."""
return await self._voice_manager.list_voices()
async def generate_from_phonemes(
self,
phonemes: str,
voice: str,
speed: float = 1.0,
lang_code: Optional[str] = None,
) -> Tuple[np.ndarray, float]:
"""Generate audio directly from phonemes.
Args:
phonemes: Phonemes in Kokoro format
voice: Voice name
speed: Speed multiplier
lang_code: Optional language code override
Returns:
Tuple of (audio array, processing time)
"""
start_time = time.time()
try:
# Get backend and voice path
backend = self.model_manager.get_backend()
voice_name, voice_path = await self._get_voices_path(voice)
if isinstance(backend, KokoroV1):
# For Kokoro V1, use generate_from_tokens with raw phonemes
result = None
# Use provided lang_code or determine from voice name
pipeline_lang_code = lang_code if lang_code else voice[:1].lower()
logger.info(
f"Using lang_code '{pipeline_lang_code}' for voice '{voice_name}' in phoneme pipeline"
)
try:
# Use backend's pipeline management
for r in backend._get_pipeline(
pipeline_lang_code
).generate_from_tokens(
tokens=phonemes, # Pass raw phonemes string
voice=voice_path,
speed=speed,
):
if r.audio is not None:
result = r
break
except Exception as e:
logger.error(f"Failed to generate from phonemes: {e}")
raise RuntimeError(f"Phoneme generation failed: {e}")
if result is None or result.audio is None:
raise ValueError("No audio generated")
processing_time = time.time() - start_time
return result.audio.numpy(), processing_time
else:
raise ValueError(
"Phoneme generation only supported with Kokoro V1 backend"
)
except Exception as e:
logger.error(f"Error in phoneme audio generation: {str(e)}")
raise