Spaces:
Running
Running
File size: 7,383 Bytes
f0248ed cd1309d c72d839 f0248ed cd1309d f0248ed cd1309d f0248ed 2d2f2b9 cd1309d f0248ed cd1309d f0248ed cd1309d f0248ed cd1309d f0248ed cd1309d f0248ed cd1309d 2477bc4 f0248ed c72d839 cd1309d 2477bc4 f0248ed c72d839 cd1309d 2477bc4 34f1262 c72d839 f0248ed cd1309d f0248ed cd1309d c72d839 f0248ed cd1309d f0248ed cd1309d f0248ed cd1309d f0248ed cd1309d f0248ed 34f1262 f0248ed 34f1262 f0248ed 34f1262 f0248ed 34f1262 f0248ed cd1309d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
"""Main entry point for the Audio Translation Web Application using Gradio
Handles file upload, processing pipeline, and UI rendering
"""
import logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("app.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
import gradio as gr
import os
import time
import numpy as np
import soundfile as sf
from utils.stt import transcribe_audio
from utils.translation import translate_text
from utils.tts import get_tts_engine
# Initialize environment configurations
os.makedirs("temp/uploads", exist_ok=True)
os.makedirs("temp/outputs", exist_ok=True)
# CSS for styling the Gradio interface
css = """
.gradio-container {
max-width: 1200px;
margin: 0 auto;
}
.output-text {
font-family: monospace;
padding: 10px;
background-color: #f5f5f5;
border-radius: 4px;
}
"""
def handle_file_processing(audio_file):
"""
Execute the complete processing pipeline:
1. Speech-to-Text (STT)
2. Machine Translation
3. Text-to-Speech (TTS)
Args:
audio_file: Tuple containing (sample_rate, audio_data)
Returns:
Tuple containing (english_text, chinese_text, output_audio)
"""
logger.info("Starting processing for uploaded audio")
try:
# Save the uploaded audio to a temporary file
sr, audio_data = audio_file
temp_path = os.path.join("temp/uploads", f"upload_{time.time()}.wav")
sf.write(temp_path, audio_data, sr)
logger.info(f"Saved uploaded audio to {temp_path}")
# STT Phase
logger.info("Beginning STT processing")
english_text = transcribe_audio(temp_path)
logger.info(f"STT completed. Text length: {len(english_text)} characters")
# Translation Phase
logger.info("Beginning translation")
chinese_text = translate_text(english_text)
logger.info(f"Translation completed. Translated length: {len(chinese_text)} characters")
# TTS Phase
logger.info("Beginning TTS generation")
# Initialize TTS engine with appropriate language code for Chinese
engine = get_tts_engine(lang_code='z') # 'z' for Mandarin Chinese
# Generate speech and get the file path
output_path = engine.generate_speech(chinese_text, voice="zf_xiaobei")
logger.info(f"TTS completed. Output file: {output_path}")
# Load the generated audio for Gradio output
audio_data, sr = sf.read(output_path)
return english_text, chinese_text, (sr, audio_data)
except Exception as e:
logger.error(f"Processing failed: {str(e)}", exc_info=True)
raise gr.Error(f"Processing Failed: {str(e)}")
def stream_audio(chinese_text, voice, speed):
"""
Stream audio in chunks for the Gradio interface
Args:
chinese_text: The Chinese text to convert to speech
voice: The voice to use
speed: The speech speed factor
Returns:
Generator yielding audio chunks
"""
engine = get_tts_engine(lang_code='z')
# Stream the audio in chunks
for sample_rate, audio_chunk in engine.generate_speech_stream(
chinese_text,
voice=voice,
speed=speed
):
# Create a temporary file for each chunk
temp_chunk_path = f"temp/outputs/chunk_{time.time()}.wav"
sf.write(temp_chunk_path, audio_chunk, sample_rate)
# Load the chunk for Gradio output
chunk_data, sr = sf.read(temp_chunk_path)
# Clean up the temporary chunk file
os.remove(temp_chunk_path)
yield (sr, chunk_data)
def create_interface():
"""
Create and configure the Gradio interface
Returns:
Gradio Blocks interface
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# π§ High-Quality Audio Translation System")
gr.Markdown("Upload English Audio β Get Chinese Speech Output")
with gr.Row():
with gr.Column(scale=2):
# File upload component
audio_input = gr.Audio(
label="Upload English Audio",
type="numpy",
sources=["upload", "microphone"]
)
# Process button
process_btn = gr.Button("Process Audio", variant="primary")
with gr.Column(scale=1):
# TTS Settings
with gr.Box():
gr.Markdown("### TTS Settings")
voice_dropdown = gr.Dropdown(
choices=["Xiaobei (Female)", "Yunjian (Male)"],
value="Xiaobei (Female)",
label="Select Voice"
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
# Output section
with gr.Row():
with gr.Column(scale=2):
# Text outputs
english_output = gr.Textbox(
label="Recognition Results",
lines=5,
elem_classes=["output-text"]
)
chinese_output = gr.Textbox(
label="Translation Results",
lines=5,
elem_classes=["output-text"]
)
with gr.Column(scale=1):
# Audio output
audio_output = gr.Audio(
label="Audio Output",
type="numpy"
)
# Stream button
stream_btn = gr.Button("Stream Audio")
# Download button is automatically provided by gr.Audio
# Set up event handlers
process_btn.click(
fn=handle_file_processing,
inputs=[audio_input],
outputs=[english_output, chinese_output, audio_output]
)
# Map voice selection to actual voice IDs
def get_voice_id(voice_name):
voice_map = {
"Xiaobei (Female)": "zf_xiaobei",
"Yunjian (Male)": "zm_yunjian"
}
return voice_map.get(voice_name, "zf_xiaobei")
# Stream button handler
stream_btn.click(
fn=lambda text, voice, speed: stream_audio(text, get_voice_id(voice), speed),
inputs=[chinese_output, voice_dropdown, speed_slider],
outputs=audio_output
)
# Examples
gr.Examples(
examples=[
["examples/sample1.mp3"],
["examples/sample2.wav"]
],
inputs=audio_input
)
return interface
def main():
"""
Main application entry point
"""
logger.info("Starting Gradio application")
interface = create_interface()
interface.launch()
if __name__ == "__main__":
main() |