Spaces:
Build error
Build error
File size: 31,490 Bytes
8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 b6a5e98 0c2d9e7 b6a5e98 6613cd9 b6a5e98 6613cd9 b6a5e98 6613cd9 b6a5e98 0c2d9e7 b6a5e98 8a0c4b0 6613cd9 8a0c4b0 781eb5f 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 621a9bf 8a0c4b0 6613cd9 8a0c4b0 621a9bf 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 b8b5e0c 8a0c4b0 b8b5e0c 8a0c4b0 6613cd9 621a9bf 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 621a9bf 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 621a9bf 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 74466cd 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 621a9bf 0c2d9e7 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 0c2d9e7 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 0c2d9e7 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 0c2d9e7 8a0c4b0 0c2d9e7 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 0c2d9e7 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 0c2d9e7 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6514731 8a0c4b0 621a9bf 8a0c4b0 f7aaf3b 6825e46 8a0c4b0 6613cd9 8a0c4b0 6613cd9 8a0c4b0 6613cd9 1d177ae 6613cd9 1d177ae 6613cd9 1d177ae 6613cd9 0c2d9e7 1d177ae 0c2d9e7 1d177ae 0c2d9e7 6613cd9 0c2d9e7 6613cd9 1d177ae 0c2d9e7 6613cd9 1d177ae 6613cd9 0c2d9e7 6613cd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
"""Audio Processing Application Service for pipeline orchestration."""
import logging
import os
import tempfile
import time
import uuid
from pathlib import Path
from typing import Optional, Dict, Any
from contextlib import contextmanager
from ..dtos.audio_upload_dto import AudioUploadDto
from ..dtos.processing_request_dto import ProcessingRequestDto
from ..dtos.processing_result_dto import ProcessingResultDto
from ..error_handling.error_mapper import ErrorMapper
from ..error_handling.structured_logger import StructuredLogger, LogContext, get_structured_logger
from ..error_handling.recovery_manager import RecoveryManager, RetryConfig, CircuitBreakerConfig
from ...domain.interfaces.speech_recognition import ISpeechRecognitionService
from ...domain.interfaces.translation import ITranslationService
from ...domain.interfaces.speech_synthesis import ISpeechSynthesisService
from ...domain.models.audio_content import AudioContent
from ...domain.models.text_content import TextContent
from ...domain.models.translation_request import TranslationRequest
from ...domain.models.speech_synthesis_request import SpeechSynthesisRequest
from ...domain.models.voice_settings import VoiceSettings
from ...domain.exceptions import (
DomainException,
AudioProcessingException,
SpeechRecognitionException,
TranslationFailedException,
SpeechSynthesisException
)
from ...infrastructure.config.app_config import AppConfig
from ...infrastructure.config.dependency_container import DependencyContainer
logger = get_structured_logger(__name__)
class AudioProcessingApplicationService:
"""Application service for orchestrating the complete audio processing pipeline."""
def __init__(
self,
container: DependencyContainer,
config: Optional[AppConfig] = None
):
"""
Initialize the audio processing application service.
Args:
container: Dependency injection container
config: Application configuration (optional, will be resolved from container)
"""
try:
logger.info("Initializing AudioProcessingApplicationService...")
self._container = container
self._config = config or container.resolve(AppConfig)
self._temp_files: Dict[str, str] = {} # Track temporary files for cleanup
# Initialize error handling components
self._error_mapper = ErrorMapper()
self._recovery_manager = RecoveryManager()
# Skip complex logging setup for now to avoid issues
# self._setup_logging()
logger.info("AudioProcessingApplicationService initialized successfully")
except Exception as e:
print(f"Error: Failed to initialize AudioProcessingApplicationService: {e}")
raise
def _setup_logging(self) -> None:
"""Setup logging configuration."""
try:
log_config = self._config.get_logging_config()
# Configure logger level
logger.setLevel(getattr(logging, log_config['level'].upper(), logging.INFO))
# Add file handler if enabled
if log_config.get('enable_file_logging', False):
file_handler = logging.FileHandler(log_config['log_file_path'])
file_handler.setLevel(logger.level)
formatter = logging.Formatter(log_config['format'])
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
except Exception as e:
logger.warning(f"Failed to setup logging configuration: {e}")
def process_audio_pipeline(self, request: ProcessingRequestDto) -> ProcessingResultDto:
"""
Process audio through the complete pipeline: STT -> Translation -> TTS.
Args:
request: Processing request containing audio and parameters
Returns:
ProcessingResultDto: Result of the complete processing pipeline
"""
# Generate correlation ID and start operation logging
correlation_id = logger.log_operation_start(
"audio_processing_pipeline",
extra={
'asr_model': request.asr_model,
'target_language': request.target_language,
'voice': request.voice,
'file_name': request.audio.filename,
'file_size': request.audio.size
}
)
start_time = time.time()
context = LogContext(
correlation_id=correlation_id,
operation="audio_processing_pipeline",
component="AudioProcessingApplicationService"
)
try:
# Validate request
self._validate_request(request)
# Create temporary working directory
with self._create_temp_directory(correlation_id) as temp_dir:
# Step 1: Convert uploaded audio to domain model
audio_content = self._convert_upload_to_audio_content(request.audio, temp_dir)
# Step 2: Speech-to-Text with retry and fallback
original_text = self._perform_speech_recognition_with_recovery(
audio_content,
request.asr_model,
correlation_id
)
# Step 3: Translation (if needed) with retry
translated_text = original_text
if request.requires_translation:
translated_text = self._perform_translation_with_recovery(
original_text,
request.source_language,
request.target_language,
correlation_id
)
# Step 4: Text-to-Speech with fallback providers
output_audio_path = self._perform_speech_synthesis_with_recovery(
translated_text,
request.voice,
request.speed,
request.target_language,
temp_dir,
correlation_id
)
# Calculate processing time
processing_time = time.time() - start_time
# Create successful result
result = ProcessingResultDto.success_result(
original_text=original_text.text,
translated_text=translated_text.text if translated_text != original_text else None,
audio_path=output_audio_path,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'asr_model': request.asr_model,
'target_language': request.target_language,
'voice': request.voice,
'speed': request.speed,
'translation_required': request.requires_translation
}
)
# Log successful completion
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=True,
duration=processing_time,
context=context,
extra={
'original_text_length': len(original_text.text),
'translated_text_length': len(translated_text.text) if translated_text != original_text else 0,
'output_file': output_audio_path
}
)
return result
except DomainException as e:
processing_time = time.time() - start_time
# Map exception to user-friendly error
error_context = {
'file_name': request.audio.filename,
'file_size': request.audio.size,
'operation': 'audio_processing_pipeline',
'correlation_id': correlation_id
}
error_mapping = self._error_mapper.map_exception(e, error_context)
logger.error(
f"Domain error in audio processing pipeline: {error_mapping.user_message}",
context=context,
exception=e,
extra={
'error_code': error_mapping.error_code,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'recovery_suggestions': error_mapping.recovery_suggestions
}
)
# Log operation failure
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=False,
duration=processing_time,
context=context
)
return ProcessingResultDto.error_result(
error_message=error_mapping.user_message,
error_code=error_mapping.error_code,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'recovery_suggestions': error_mapping.recovery_suggestions,
'technical_details': error_mapping.technical_details
}
)
except Exception as e:
processing_time = time.time() - start_time
# Map unexpected exception
error_context = {
'file_name': request.audio.filename,
'operation': 'audio_processing_pipeline',
'correlation_id': correlation_id
}
error_mapping = self._error_mapper.map_exception(e, error_context)
logger.critical(
f"Unexpected error in audio processing pipeline: {error_mapping.user_message}",
context=context,
exception=e,
extra={
'error_code': error_mapping.error_code,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value
}
)
# Log operation failure
logger.log_operation_end(
"audio_processing_pipeline",
correlation_id,
success=False,
duration=processing_time,
context=context
)
return ProcessingResultDto.error_result(
error_message=error_mapping.user_message,
error_code=error_mapping.error_code,
processing_time=processing_time,
metadata={
'correlation_id': correlation_id,
'error_category': error_mapping.category.value,
'error_severity': error_mapping.severity.value,
'technical_details': error_mapping.technical_details
}
)
finally:
# Cleanup temporary files
self._cleanup_temp_files()
def _validate_request(self, request: ProcessingRequestDto) -> None:
"""
Validate processing request.
Args:
request: Processing request to validate
Raises:
ValueError: If request is invalid
"""
if not isinstance(request, ProcessingRequestDto):
raise ValueError("Request must be a ProcessingRequestDto instance")
# Additional validation beyond DTO validation
processing_config = self._config.get_processing_config()
# Check file size limits
max_size_bytes = processing_config['max_file_size_mb'] * 1024 * 1024
if request.audio.size > max_size_bytes:
raise ValueError(
f"Audio file too large: {request.audio.size} bytes. "
f"Maximum allowed: {max_size_bytes} bytes"
)
# Check supported audio formats
supported_formats = processing_config['supported_audio_formats']
file_ext = request.audio.file_extension.lstrip('.')
if file_ext not in supported_formats:
raise ValueError(
f"Unsupported audio format: {file_ext}. "
f"Supported formats: {supported_formats}"
)
@contextmanager
def _create_temp_directory(self, correlation_id: str):
"""
Create temporary directory for processing.
Args:
correlation_id: Correlation ID for tracking
Yields:
str: Path to temporary directory
"""
processing_config = self._config.get_processing_config()
base_temp_dir = processing_config['temp_dir']
# Create unique temp directory
temp_dir = os.path.join(base_temp_dir, f"processing_{correlation_id}")
try:
os.makedirs(temp_dir, exist_ok=True)
logger.info(f"Created temporary directory: {temp_dir}")
yield temp_dir
finally:
# Cleanup temp directory if configured
if processing_config.get('cleanup_temp_files', True):
try:
import shutil
shutil.rmtree(temp_dir, ignore_errors=True)
logger.info(f"Cleaned up temporary directory: {temp_dir}")
except Exception as e:
logger.warning(f"Failed to cleanup temp directory {temp_dir}: {e}")
def _convert_upload_to_audio_content(
self,
upload: AudioUploadDto,
temp_dir: str
) -> AudioContent:
"""
Convert uploaded audio to domain AudioContent.
Args:
upload: Audio upload DTO
temp_dir: Temporary directory for file operations
Returns:
AudioContent: Domain audio content model
Raises:
AudioProcessingException: If conversion fails
"""
try:
# Save uploaded content to temporary file
temp_file_path = os.path.join(temp_dir, f"input_{upload.filename}")
with open(temp_file_path, 'wb') as f:
f.write(upload.content)
# Track temp file for cleanup
self._temp_files[temp_file_path] = temp_file_path
# Determine audio format from file extension
audio_format = upload.file_extension.lstrip('.').lower()
# Create AudioContent (simplified - in real implementation would extract metadata)
# For now, set a minimal positive duration to pass validation
# In a real implementation, you would extract actual duration from the audio file
audio_content = AudioContent(
data=upload.content,
format=audio_format,
sample_rate=16000, # Default, would be extracted from actual file
duration=1.0 # Set minimal positive duration to pass validation
)
logger.info(f"Converted upload to AudioContent: {upload.filename}")
return audio_content
except Exception as e:
logger.error(f"Failed to convert upload to AudioContent: {e}")
raise AudioProcessingException(f"Failed to process uploaded audio: {str(e)}")
def _perform_speech_recognition(
self,
audio: AudioContent,
model: str,
correlation_id: str
) -> TextContent:
"""
Perform speech-to-text recognition.
Args:
audio: Audio content to transcribe
model: STT model to use
correlation_id: Correlation ID for tracking
Returns:
TextContent: Transcribed text
Raises:
SpeechRecognitionException: If STT fails
"""
try:
logger.info(f"Starting STT with model: {model} [correlation_id={correlation_id}]")
# Get STT provider from container
stt_provider = self._container.get_stt_provider(model)
# Perform transcription
text_content = stt_provider.transcribe(audio, model)
logger.info(
f"STT completed successfully [correlation_id={correlation_id}, "
f"text_length={len(text_content.text)}]"
)
return text_content
except Exception as e:
logger.error(f"STT failed: {e} [correlation_id={correlation_id}]")
raise SpeechRecognitionException(f"Speech recognition failed: {str(e)}")
def _perform_translation(
self,
text: TextContent,
source_language: Optional[str],
target_language: str,
correlation_id: str
) -> TextContent:
"""
Perform text translation.
Args:
text: Text to translate
source_language: Source language (optional, auto-detect if None)
target_language: Target language
correlation_id: Correlation ID for tracking
Returns:
TextContent: Translated text
Raises:
TranslationFailedException: If translation fails
"""
try:
logger.info(
f"Starting translation: {source_language or 'auto'} -> {target_language} "
f"[correlation_id={correlation_id}]"
)
# Get translation provider from container
translation_provider = self._container.get_translation_provider()
# Create translation request
translation_request = TranslationRequest(
source_text=text, # text is already a TextContent object
target_language=target_language,
source_language=source_language
)
# Perform translation
translated_text = translation_provider.translate(translation_request)
logger.info(
f"Translation completed successfully [correlation_id={correlation_id}, "
f"source_length={len(text.text)}, target_length={len(translated_text.text)}]"
)
return translated_text
except Exception as e:
logger.error(f"Translation failed: {e} [correlation_id={correlation_id}]")
raise TranslationFailedException(f"Translation failed: {str(e)}")
def _perform_speech_synthesis(
self,
text: TextContent,
voice: str,
speed: float,
language: str,
temp_dir: str,
correlation_id: str
) -> str:
"""
Perform text-to-speech synthesis.
Args:
text: Text to synthesize
voice: Voice to use
speed: Speech speed
language: Target language
temp_dir: Temporary directory for output
correlation_id: Correlation ID for tracking
Returns:
str: Path to generated audio file
Raises:
SpeechSynthesisException: If TTS fails
"""
try:
logger.info(
f"Starting TTS with voice: {voice}, speed: {speed}, language: {language} "
f"[correlation_id={correlation_id}]"
)
logger.info(f"Text to synthesize length: {len(text.text)} characters")
# Get TTS provider from container
logger.info(f"Getting TTS provider for voice: {voice}")
tts_provider = self._container.get_tts_provider(voice)
logger.info(f"TTS provider obtained: {tts_provider.__class__.__name__}")
# Create voice settings
logger.info("Creating voice settings")
voice_settings = VoiceSettings(
voice_id=voice,
speed=speed,
language=language
)
logger.info(f"Voice settings created: {voice_settings}")
# Create synthesis request
logger.info("Creating synthesis request")
synthesis_request = SpeechSynthesisRequest(
text_content=text, # text is already a TextContent object
voice_settings=voice_settings
)
logger.info("Synthesis request created successfully")
# Perform synthesis
logger.info("Starting TTS synthesis")
audio_content = tts_provider.synthesize(synthesis_request)
logger.info(f"TTS synthesis completed, audio format: {audio_content.format}, data length: {len(audio_content.data)}")
# Save output to file
output_filename = f"output_{correlation_id}.{audio_content.format}"
output_path = os.path.join(temp_dir, output_filename)
logger.info(f"Saving audio to: {output_path}")
with open(output_path, 'wb') as f:
f.write(audio_content.data)
# Track temp file for cleanup
self._temp_files[output_path] = output_path
logger.info(
f"TTS completed successfully [correlation_id={correlation_id}, "
f"output_file={output_path}]"
)
return output_path
except Exception as e:
logger.error(f"TTS failed: {e} [correlation_id={correlation_id}]", exception=e)
raise SpeechSynthesisException(f"Speech synthesis failed: {str(e)}")
def _get_error_code_from_exception(self, exception: Exception) -> str:
"""
Get error code from exception type.
Args:
exception: Exception instance
Returns:
str: Error code
"""
if isinstance(exception, SpeechRecognitionException):
return 'STT_ERROR'
elif isinstance(exception, TranslationFailedException):
return 'TRANSLATION_ERROR'
elif isinstance(exception, SpeechSynthesisException):
return 'TTS_ERROR'
elif isinstance(exception, ValueError):
return 'VALIDATION_ERROR'
else:
return 'SYSTEM_ERROR'
def _cleanup_temp_files(self) -> None:
"""Cleanup tracked temporary files."""
for file_path in list(self._temp_files.keys()):
try:
if os.path.exists(file_path):
os.remove(file_path)
logger.info(f"Cleaned up temp file: {file_path}")
except Exception as e:
logger.warning(f"Failed to cleanup temp file {file_path}: {e}")
finally:
# Remove from tracking regardless of success
self._temp_files.pop(file_path, None)
def get_processing_status(self, correlation_id: str) -> Dict[str, Any]:
"""
Get processing status for a correlation ID.
Args:
correlation_id: Correlation ID to check
Returns:
Dict[str, Any]: Processing status information
"""
# This would be implemented with actual status tracking
# For now, return basic info
return {
'correlation_id': correlation_id,
'status': 'unknown',
'message': 'Status tracking not implemented'
}
def get_supported_configurations(self) -> Dict[str, Any]:
"""
Get supported configurations for the processing pipeline.
Returns:
Dict[str, Any]: Supported configurations
"""
return {
'asr_models': ['parakeet', 'whisper-small', 'whisper-medium', 'whisper-large'],
'voices': ['chatterbox'],
'languages': [
'en', 'es', 'fr', 'de', 'it', 'pt', 'ru', 'ja', 'ko', 'zh',
'ar', 'hi', 'tr', 'pl', 'nl', 'sv', 'da', 'no', 'fi'
],
'audio_formats': self._config.get_processing_config()['supported_audio_formats'],
'max_file_size_mb': self._config.get_processing_config()['max_file_size_mb'],
'speed_range': {'min': 0.5, 'max': 2.0}
}
def cleanup(self) -> None:
"""Cleanup application service resources."""
logger.info("Cleaning up AudioProcessingApplicationService")
# Cleanup temporary files
self._cleanup_temp_files()
logger.info("AudioProcessingApplicationService cleanup completed")
def __enter__(self):
"""Context manager entry."""
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit with cleanup."""
self.cleanup()
def _perform_speech_recognition_with_recovery(
self,
audio: AudioContent,
model: str,
correlation_id: str
) -> TextContent:
"""
Perform speech-to-text recognition with retry and fallback.
Args:
audio: Audio content to transcribe
model: STT model to use
correlation_id: Correlation ID for tracking
Returns:
TextContent: Transcribed text
Raises:
SpeechRecognitionException: If all attempts fail
"""
context = LogContext(
correlation_id=correlation_id,
operation="speech_recognition",
component="AudioProcessingApplicationService"
)
# Configure retry for STT
retry_config = RetryConfig(
max_attempts=2,
base_delay=1.0,
retryable_exceptions=[SpeechRecognitionException, ConnectionError, TimeoutError]
)
def stt_operation(*args, **kwargs):
return self._perform_speech_recognition(audio, model, correlation_id)
try:
# Try with retry
return self._recovery_manager.retry_with_backoff(
stt_operation,
retry_config,
correlation_id
)
except Exception as e:
# Try fallback models if primary fails
stt_config = self._config.get_stt_config()
fallback_models = [m for m in stt_config['preferred_providers'] if m != model]
if fallback_models:
logger.warning(
f"STT model {model} failed, trying fallbacks: {fallback_models}",
context=context,
exception=e
)
fallback_funcs = [
lambda *args, m=fallback_model, **kwargs: self._perform_speech_recognition(audio, m, correlation_id)
for fallback_model in fallback_models
]
return self._recovery_manager.execute_with_fallback(
stt_operation,
fallback_funcs,
correlation_id
)
else:
raise
def _perform_translation_with_recovery(
self,
text: TextContent,
source_language: Optional[str],
target_language: str,
correlation_id: str
) -> TextContent:
"""
Perform text translation with retry.
Args:
text: Text to translate
source_language: Source language (optional, auto-detect if None)
target_language: Target language
correlation_id: Correlation ID for tracking
Returns:
TextContent: Translated text
Raises:
TranslationFailedException: If all attempts fail
"""
# Configure retry for translation
retry_config = RetryConfig(
max_attempts=3,
base_delay=1.0,
exponential_backoff=True,
retryable_exceptions=[TranslationFailedException, ConnectionError, TimeoutError]
)
def translation_operation(*args, **kwargs):
return self._perform_translation(text, source_language, target_language, correlation_id)
return self._recovery_manager.retry_with_backoff(
translation_operation,
retry_config,
correlation_id
)
def _perform_speech_synthesis_with_recovery(
self,
text: TextContent,
voice: str,
speed: float,
language: str,
temp_dir: str,
correlation_id: str
) -> str:
"""
Perform text-to-speech synthesis with fallback providers.
Args:
text: Text to synthesize
voice: Voice to use
speed: Speech speed
language: Target language
temp_dir: Temporary directory for output
correlation_id: Correlation ID for tracking
Returns:
str: Path to generated audio file
Raises:
SpeechSynthesisException: If all providers fail
"""
context = LogContext(
correlation_id=correlation_id,
operation="speech_synthesis",
component="AudioProcessingApplicationService"
)
logger.info(f"Starting TTS synthesis with recovery [correlation_id={correlation_id}]")
logger.info(f"Parameters: voice={voice}, speed={speed}, language={language}")
logger.info(f"Text type: {type(text)}, Text content type: {type(text.text) if hasattr(text, 'text') else 'N/A'}")
def tts_operation(*args, **kwargs):
logger.info(f"Executing TTS operation [correlation_id={correlation_id}]")
try:
result = self._perform_speech_synthesis(text, voice, speed, language, temp_dir, correlation_id)
logger.info(f"TTS operation completed successfully [correlation_id={correlation_id}]")
return result
except Exception as e:
logger.error(f"TTS operation failed: {str(e)} [correlation_id={correlation_id}]")
raise
try:
# Try with circuit breaker protection
logger.info(f"Attempting TTS with circuit breaker [correlation_id={correlation_id}]")
return self._recovery_manager.execute_with_circuit_breaker(
tts_operation,
f"tts_{voice}",
CircuitBreakerConfig(failure_threshold=3, recovery_timeout=30.0),
correlation_id
)
except Exception as e:
logger.error(f"Primary TTS failed, trying fallbacks: {str(e)} [correlation_id={correlation_id}]", context=context, exception=e)
# Try fallback TTS providers
tts_config = self._config.get_tts_config()
fallback_voices = [v for v in tts_config['preferred_providers'] if v != voice]
if fallback_voices:
logger.warning(
f"TTS voice {voice} failed, trying fallbacks: {fallback_voices}",
context=context,
exception=e
)
fallback_funcs = [
lambda *args, v=fallback_voice, **kwargs: self._perform_speech_synthesis(
text, v, speed, language, temp_dir, correlation_id
)
for fallback_voice in fallback_voices
]
return self._recovery_manager.execute_with_fallback(
tts_operation,
fallback_funcs,
correlation_id
)
else:
logger.error(f"No fallback voices available [correlation_id={correlation_id}]")
raise |