Spaces:
Running
Running
import os | |
import time | |
import logging | |
import torch | |
import numpy as np | |
import soundfile as sf | |
from pathlib import Path | |
from typing import Optional | |
from dia.model import Dia | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Constants | |
DEFAULT_SAMPLE_RATE = 44100 | |
DEFAULT_MODEL_NAME = "nari-labs/Dia-1.6B" | |
# Global model instance (lazy loaded) | |
_model = None | |
def _get_model() -> Dia: | |
"""Lazy-load the Dia model to avoid loading it until needed""" | |
global _model | |
if _model is None: | |
logger.info("Loading Dia model...") | |
try: | |
_model = Dia.from_pretrained(DEFAULT_MODEL_NAME, compute_dtype="float16") | |
logger.info("Dia model loaded successfully") | |
except Exception as e: | |
logger.error(f"Error loading Dia model: {e}", exc_info=True) | |
raise | |
return _model | |
def generate_speech(text: str, language: str = "zh") -> str: | |
"""Public interface for TTS generation using Dia model | |
Args: | |
text (str): Input text to synthesize | |
language (str): Language code (not used in Dia model, kept for API compatibility) | |
Returns: | |
str: Path to the generated audio file | |
""" | |
logger.info(f"Generating speech for text length: {len(text)}") | |
try: | |
# Create output directory if it doesn't exist | |
os.makedirs("temp/outputs", exist_ok=True) | |
# Generate unique output path | |
output_path = f"temp/outputs/output_{int(time.time())}.wav" | |
# Get the model | |
model = _get_model() | |
# Generate audio | |
start_time = time.time() | |
with torch.inference_mode(): | |
output_audio_np = model.generate( | |
text, | |
max_tokens=None, # Use default from model config | |
cfg_scale=3.0, | |
temperature=1.3, | |
top_p=0.95, | |
cfg_filter_top_k=35, | |
use_torch_compile=False, # Keep False for stability | |
verbose=False | |
) | |
end_time = time.time() | |
logger.info(f"Generation finished in {end_time - start_time:.2f} seconds") | |
# Process the output | |
if output_audio_np is not None: | |
# Apply a slight slowdown for better quality (0.94x speed) | |
speed_factor = 0.94 | |
original_len = len(output_audio_np) | |
target_len = int(original_len / speed_factor) | |
if target_len != original_len and target_len > 0: | |
x_original = np.arange(original_len) | |
x_resampled = np.linspace(0, original_len - 1, target_len) | |
output_audio_np = np.interp(x_resampled, x_original, output_audio_np) | |
logger.info(f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed") | |
# Save the audio file | |
sf.write(output_path, output_audio_np, DEFAULT_SAMPLE_RATE) | |
logger.info(f"Audio saved to {output_path}") | |
return output_path | |
else: | |
logger.warning("Generation produced no output, returning dummy audio") | |
return "temp/outputs/dummy.wav" | |
except Exception as e: | |
logger.error(f"TTS generation failed: {str(e)}", exc_info=True) | |
# Return dummy path in case of error | |
return "temp/outputs/dummy.wav" |