teachingAssistant / utils /tts_engines.py
Michael Hu
refator tts part
3ed3b5a
raw
history blame
12.4 kB
import logging
import time
import os
import numpy as np
import soundfile as sf
from typing import Dict, List, Optional, Tuple, Generator, Any
from utils.tts_base import TTSEngineBase, DummyTTSEngine
# Configure logging
logger = logging.getLogger(__name__)
# Flag to track TTS engine availability
KOKORO_AVAILABLE = False
KOKORO_SPACE_AVAILABLE = True
DIA_AVAILABLE = False
# Try to import Kokoro
try:
from kokoro import KPipeline
KOKORO_AVAILABLE = True
logger.info("Kokoro TTS engine is available")
except AttributeError as e:
# Specifically catch the EspeakWrapper.set_data_path error
if "EspeakWrapper" in str(e) and "set_data_path" in str(e):
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue, falling back to Kokoro FastAPI server")
else:
# Re-raise if it's a different error
logger.error(f"Kokoro import failed with unexpected error: {str(e)}")
raise
except ImportError:
logger.warning("Kokoro TTS engine is not available")
# Try to import Dia dependencies to check availability
try:
import torch
from dia.model import Dia
DIA_AVAILABLE = True
logger.info("Dia TTS engine is available")
except ImportError:
logger.warning("Dia TTS engine is not available")
class KokoroTTSEngine(TTSEngineBase):
"""Kokoro TTS engine implementation
This engine uses the Kokoro library for TTS generation.
"""
def __init__(self, lang_code: str = 'z'):
super().__init__(lang_code)
try:
self.pipeline = KPipeline(lang_code=lang_code)
logger.info("Kokoro TTS engine successfully initialized")
except Exception as e:
logger.error(f"Failed to initialize Kokoro pipeline: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
raise
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
"""Generate speech using Kokoro TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
speed (float): Speech speed multiplier (0.5 to 2.0)
Returns:
str: Path to the generated audio file
"""
logger.info(f"Generating speech with Kokoro for text length: {len(text)}")
# Generate unique output path
output_path = self._generate_output_path()
# Generate speech
generator = self.pipeline(text, voice=voice, speed=speed)
for _, _, audio in generator:
logger.info(f"Saving Kokoro audio to {output_path}")
sf.write(output_path, audio, 24000)
break
logger.info(f"Kokoro audio generation complete: {output_path}")
return output_path
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
"""Generate speech stream using Kokoro TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use
speed (float): Speech speed multiplier
Yields:
tuple: (sample_rate, audio_data) pairs for each segment
"""
logger.info(f"Generating speech stream with Kokoro for text length: {len(text)}")
# Generate speech stream
generator = self.pipeline(text, voice=voice, speed=speed)
for _, _, audio in generator:
yield 24000, audio
class KokoroSpaceTTSEngine(TTSEngineBase):
"""Kokoro Space TTS engine implementation
This engine uses the Kokoro FastAPI server for TTS generation.
"""
def __init__(self, lang_code: str = 'z'):
super().__init__(lang_code)
try:
from gradio_client import Client
self.client = Client("Remsky/Kokoro-TTS-Zero")
logger.info("Kokoro Space TTS engine successfully initialized")
except Exception as e:
logger.error(f"Failed to initialize Kokoro Space client: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
raise
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
"""Generate speech using Kokoro Space TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
speed (float): Speech speed multiplier (0.5 to 2.0)
Returns:
str: Path to the generated audio file
"""
logger.info(f"Generating speech with Kokoro Space for text length: {len(text)}")
logger.info(f"Text to generate speech on is: {text[:50]}..." if len(text) > 50 else f"Text to generate speech on is: {text}")
# Generate unique output path
output_path = self._generate_output_path()
try:
# Use af_nova as the default voice for Kokoro Space
voice_to_use = 'af_nova' if voice == 'af_heart' else voice
# Generate speech
result = self.client.predict(
text=text,
voice_names=voice_to_use,
speed=speed,
api_name="/generate_speech_from_ui"
)
logger.info(f"Received audio from Kokoro FastAPI server: {result}")
# TODO: Process the result and save to output_path
# For now, we'll return the result path directly if it's a string
if isinstance(result, str) and os.path.exists(result):
return result
else:
logger.warning("Unexpected result from Kokoro Space, falling back to dummy audio")
return DummyTTSEngine().generate_speech(text, voice, speed)
except Exception as e:
logger.error(f"Failed to generate speech from Kokoro FastAPI server: {str(e)}")
logger.error(f"Error type: {type(e).__name__}")
logger.info("Falling back to dummy audio generation")
return DummyTTSEngine().generate_speech(text, voice, speed)
class DiaTTSEngine(TTSEngineBase):
"""Dia TTS engine implementation
This engine uses the Dia model for TTS generation.
"""
def __init__(self, lang_code: str = 'z'):
super().__init__(lang_code)
# Dia doesn't need initialization here, it will be lazy-loaded when needed
logger.info("Dia TTS engine initialized (lazy loading)")
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
"""Generate speech using Dia TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID (not used in Dia)
speed (float): Speech speed multiplier (not used in Dia)
Returns:
str: Path to the generated audio file
"""
logger.info(f"Generating speech with Dia for text length: {len(text)}")
try:
# Import here to avoid circular imports
from utils.tts_dia import generate_speech as dia_generate_speech
logger.info("Successfully imported Dia speech generation function")
# Call Dia's generate_speech function
# Note: Dia's function expects a language parameter, not voice or speed
output_path = dia_generate_speech(text, language=self.lang_code)
logger.info(f"Generated audio with Dia: {output_path}")
return output_path
except ImportError as import_err:
logger.error(f"Dia TTS generation failed due to import error: {str(import_err)}")
logger.error("Falling back to dummy audio generation")
return DummyTTSEngine().generate_speech(text, voice, speed)
except Exception as dia_error:
logger.error(f"Dia TTS generation failed: {str(dia_error)}", exc_info=True)
logger.error(f"Error type: {type(dia_error).__name__}")
logger.error("Falling back to dummy audio generation")
return DummyTTSEngine().generate_speech(text, voice, speed)
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]:
"""Generate speech stream using Dia TTS engine
Args:
text (str): Input text to synthesize
voice (str): Voice ID (not used in Dia)
speed (float): Speech speed multiplier (not used in Dia)
Yields:
tuple: (sample_rate, audio_data) pairs for each segment
"""
logger.info(f"Generating speech stream with Dia for text length: {len(text)}")
try:
# Import required modules
import torch
from utils.tts_dia import _get_model, DEFAULT_SAMPLE_RATE
# Get the Dia model
model = _get_model()
# Generate audio
with torch.inference_mode():
output_audio_np = model.generate(
text,
max_tokens=None,
cfg_scale=3.0,
temperature=1.3,
top_p=0.95,
cfg_filter_top_k=35,
use_torch_compile=False,
verbose=False
)
if output_audio_np is not None:
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})")
yield DEFAULT_SAMPLE_RATE, output_audio_np
else:
logger.warning("Dia model returned None for audio output")
logger.warning("Falling back to dummy audio stream")
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed)
except ImportError as import_err:
logger.error(f"Dia TTS streaming failed due to import error: {str(import_err)}")
logger.error("Falling back to dummy audio stream")
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed)
except Exception as dia_error:
logger.error(f"Dia TTS streaming failed: {str(dia_error)}", exc_info=True)
logger.error(f"Error type: {type(dia_error).__name__}")
logger.error("Falling back to dummy audio stream")
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed)
def get_available_engines() -> List[str]:
"""Get a list of available TTS engines
Returns:
List[str]: List of available engine names
"""
available = []
if KOKORO_AVAILABLE:
available.append('kokoro')
if KOKORO_SPACE_AVAILABLE:
available.append('kokoro_space')
if DIA_AVAILABLE:
available.append('dia')
# Dummy is always available
available.append('dummy')
return available
def create_engine(engine_type: str, lang_code: str = 'z') -> TTSEngineBase:
"""Create a specific TTS engine
Args:
engine_type (str): Type of engine to create ('kokoro', 'kokoro_space', 'dia', 'dummy')
lang_code (str): Language code for the engine
Returns:
TTSEngineBase: An instance of the requested TTS engine
Raises:
ValueError: If the requested engine type is not supported
"""
if engine_type == 'kokoro':
if not KOKORO_AVAILABLE:
raise ValueError("Kokoro TTS engine is not available")
return KokoroTTSEngine(lang_code)
elif engine_type == 'kokoro_space':
if not KOKORO_SPACE_AVAILABLE:
raise ValueError("Kokoro Space TTS engine is not available")
return KokoroSpaceTTSEngine(lang_code)
elif engine_type == 'dia':
if not DIA_AVAILABLE:
raise ValueError("Dia TTS engine is not available")
return DiaTTSEngine(lang_code)
elif engine_type == 'dummy':
return DummyTTSEngine(lang_code)
else:
raise ValueError(f"Unsupported TTS engine type: {engine_type}")