Spaces:
Running
Running
import logging | |
import time | |
import os | |
import numpy as np | |
import soundfile as sf | |
from typing import Dict, List, Optional, Tuple, Generator, Any | |
from utils.tts_base import TTSEngineBase, DummyTTSEngine | |
# Configure logging | |
logger = logging.getLogger(__name__) | |
# Flag to track TTS engine availability | |
KOKORO_AVAILABLE = False | |
KOKORO_SPACE_AVAILABLE = True | |
DIA_AVAILABLE = False | |
# Try to import Kokoro | |
try: | |
from kokoro import KPipeline | |
KOKORO_AVAILABLE = True | |
logger.info("Kokoro TTS engine is available") | |
except AttributeError as e: | |
# Specifically catch the EspeakWrapper.set_data_path error | |
if "EspeakWrapper" in str(e) and "set_data_path" in str(e): | |
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue, falling back to Kokoro FastAPI server") | |
else: | |
# Re-raise if it's a different error | |
logger.error(f"Kokoro import failed with unexpected error: {str(e)}") | |
raise | |
except ImportError: | |
logger.warning("Kokoro TTS engine is not available") | |
# Try to import Dia dependencies to check availability | |
try: | |
import torch | |
from dia.model import Dia | |
DIA_AVAILABLE = True | |
logger.info("Dia TTS engine is available") | |
except ImportError: | |
logger.warning("Dia TTS engine is not available") | |
class KokoroTTSEngine(TTSEngineBase): | |
"""Kokoro TTS engine implementation | |
This engine uses the Kokoro library for TTS generation. | |
""" | |
def __init__(self, lang_code: str = 'z'): | |
super().__init__(lang_code) | |
try: | |
self.pipeline = KPipeline(lang_code=lang_code) | |
logger.info("Kokoro TTS engine successfully initialized") | |
except Exception as e: | |
logger.error(f"Failed to initialize Kokoro pipeline: {str(e)}") | |
logger.error(f"Error type: {type(e).__name__}") | |
raise | |
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str: | |
"""Generate speech using Kokoro TTS engine | |
Args: | |
text (str): Input text to synthesize | |
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.) | |
speed (float): Speech speed multiplier (0.5 to 2.0) | |
Returns: | |
str: Path to the generated audio file | |
""" | |
logger.info(f"Generating speech with Kokoro for text length: {len(text)}") | |
# Generate unique output path | |
output_path = self._generate_output_path() | |
# Generate speech | |
generator = self.pipeline(text, voice=voice, speed=speed) | |
for _, _, audio in generator: | |
logger.info(f"Saving Kokoro audio to {output_path}") | |
sf.write(output_path, audio, 24000) | |
break | |
logger.info(f"Kokoro audio generation complete: {output_path}") | |
return output_path | |
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]: | |
"""Generate speech stream using Kokoro TTS engine | |
Args: | |
text (str): Input text to synthesize | |
voice (str): Voice ID to use | |
speed (float): Speech speed multiplier | |
Yields: | |
tuple: (sample_rate, audio_data) pairs for each segment | |
""" | |
logger.info(f"Generating speech stream with Kokoro for text length: {len(text)}") | |
# Generate speech stream | |
generator = self.pipeline(text, voice=voice, speed=speed) | |
for _, _, audio in generator: | |
yield 24000, audio | |
class KokoroSpaceTTSEngine(TTSEngineBase): | |
"""Kokoro Space TTS engine implementation | |
This engine uses the Kokoro FastAPI server for TTS generation. | |
""" | |
def __init__(self, lang_code: str = 'z'): | |
super().__init__(lang_code) | |
try: | |
from gradio_client import Client | |
self.client = Client("Remsky/Kokoro-TTS-Zero") | |
logger.info("Kokoro Space TTS engine successfully initialized") | |
except Exception as e: | |
logger.error(f"Failed to initialize Kokoro Space client: {str(e)}") | |
logger.error(f"Error type: {type(e).__name__}") | |
raise | |
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str: | |
"""Generate speech using Kokoro Space TTS engine | |
Args: | |
text (str): Input text to synthesize | |
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.) | |
speed (float): Speech speed multiplier (0.5 to 2.0) | |
Returns: | |
str: Path to the generated audio file | |
""" | |
logger.info(f"Generating speech with Kokoro Space for text length: {len(text)}") | |
logger.info(f"Text to generate speech on is: {text[:50]}..." if len(text) > 50 else f"Text to generate speech on is: {text}") | |
# Generate unique output path | |
output_path = self._generate_output_path() | |
try: | |
# Use af_nova as the default voice for Kokoro Space | |
voice_to_use = 'af_nova' if voice == 'af_heart' else voice | |
# Generate speech | |
result = self.client.predict( | |
text=text, | |
voice_names=voice_to_use, | |
speed=speed, | |
api_name="/generate_speech_from_ui" | |
) | |
logger.info(f"Received audio from Kokoro FastAPI server: {result}") | |
# TODO: Process the result and save to output_path | |
# For now, we'll return the result path directly if it's a string | |
if isinstance(result, str) and os.path.exists(result): | |
return result | |
else: | |
logger.warning("Unexpected result from Kokoro Space, falling back to dummy audio") | |
return DummyTTSEngine().generate_speech(text, voice, speed) | |
except Exception as e: | |
logger.error(f"Failed to generate speech from Kokoro FastAPI server: {str(e)}") | |
logger.error(f"Error type: {type(e).__name__}") | |
logger.info("Falling back to dummy audio generation") | |
return DummyTTSEngine().generate_speech(text, voice, speed) | |
class DiaTTSEngine(TTSEngineBase): | |
"""Dia TTS engine implementation | |
This engine uses the Dia model for TTS generation. | |
""" | |
def __init__(self, lang_code: str = 'z'): | |
super().__init__(lang_code) | |
# Dia doesn't need initialization here, it will be lazy-loaded when needed | |
logger.info("Dia TTS engine initialized (lazy loading)") | |
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str: | |
"""Generate speech using Dia TTS engine | |
Args: | |
text (str): Input text to synthesize | |
voice (str): Voice ID (not used in Dia) | |
speed (float): Speech speed multiplier (not used in Dia) | |
Returns: | |
str: Path to the generated audio file | |
""" | |
logger.info(f"Generating speech with Dia for text length: {len(text)}") | |
try: | |
# Import here to avoid circular imports | |
from utils.tts_dia import generate_speech as dia_generate_speech | |
logger.info("Successfully imported Dia speech generation function") | |
# Call Dia's generate_speech function | |
# Note: Dia's function expects a language parameter, not voice or speed | |
output_path = dia_generate_speech(text, language=self.lang_code) | |
logger.info(f"Generated audio with Dia: {output_path}") | |
return output_path | |
except ImportError as import_err: | |
logger.error(f"Dia TTS generation failed due to import error: {str(import_err)}") | |
logger.error("Falling back to dummy audio generation") | |
return DummyTTSEngine().generate_speech(text, voice, speed) | |
except Exception as dia_error: | |
logger.error(f"Dia TTS generation failed: {str(dia_error)}", exc_info=True) | |
logger.error(f"Error type: {type(dia_error).__name__}") | |
logger.error("Falling back to dummy audio generation") | |
return DummyTTSEngine().generate_speech(text, voice, speed) | |
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]: | |
"""Generate speech stream using Dia TTS engine | |
Args: | |
text (str): Input text to synthesize | |
voice (str): Voice ID (not used in Dia) | |
speed (float): Speech speed multiplier (not used in Dia) | |
Yields: | |
tuple: (sample_rate, audio_data) pairs for each segment | |
""" | |
logger.info(f"Generating speech stream with Dia for text length: {len(text)}") | |
try: | |
# Import required modules | |
import torch | |
from utils.tts_dia import _get_model, DEFAULT_SAMPLE_RATE | |
# Get the Dia model | |
model = _get_model() | |
# Generate audio | |
with torch.inference_mode(): | |
output_audio_np = model.generate( | |
text, | |
max_tokens=None, | |
cfg_scale=3.0, | |
temperature=1.3, | |
top_p=0.95, | |
cfg_filter_top_k=35, | |
use_torch_compile=False, | |
verbose=False | |
) | |
if output_audio_np is not None: | |
logger.info(f"Successfully generated audio with Dia (length: {len(output_audio_np)})") | |
yield DEFAULT_SAMPLE_RATE, output_audio_np | |
else: | |
logger.warning("Dia model returned None for audio output") | |
logger.warning("Falling back to dummy audio stream") | |
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed) | |
except ImportError as import_err: | |
logger.error(f"Dia TTS streaming failed due to import error: {str(import_err)}") | |
logger.error("Falling back to dummy audio stream") | |
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed) | |
except Exception as dia_error: | |
logger.error(f"Dia TTS streaming failed: {str(dia_error)}", exc_info=True) | |
logger.error(f"Error type: {type(dia_error).__name__}") | |
logger.error("Falling back to dummy audio stream") | |
yield from DummyTTSEngine().generate_speech_stream(text, voice, speed) | |
def get_available_engines() -> List[str]: | |
"""Get a list of available TTS engines | |
Returns: | |
List[str]: List of available engine names | |
""" | |
available = [] | |
if KOKORO_AVAILABLE: | |
available.append('kokoro') | |
if KOKORO_SPACE_AVAILABLE: | |
available.append('kokoro_space') | |
if DIA_AVAILABLE: | |
available.append('dia') | |
# Dummy is always available | |
available.append('dummy') | |
return available | |
def create_engine(engine_type: str, lang_code: str = 'z') -> TTSEngineBase: | |
"""Create a specific TTS engine | |
Args: | |
engine_type (str): Type of engine to create ('kokoro', 'kokoro_space', 'dia', 'dummy') | |
lang_code (str): Language code for the engine | |
Returns: | |
TTSEngineBase: An instance of the requested TTS engine | |
Raises: | |
ValueError: If the requested engine type is not supported | |
""" | |
if engine_type == 'kokoro': | |
if not KOKORO_AVAILABLE: | |
raise ValueError("Kokoro TTS engine is not available") | |
return KokoroTTSEngine(lang_code) | |
elif engine_type == 'kokoro_space': | |
if not KOKORO_SPACE_AVAILABLE: | |
raise ValueError("Kokoro Space TTS engine is not available") | |
return KokoroSpaceTTSEngine(lang_code) | |
elif engine_type == 'dia': | |
if not DIA_AVAILABLE: | |
raise ValueError("Dia TTS engine is not available") | |
return DiaTTSEngine(lang_code) | |
elif engine_type == 'dummy': | |
return DummyTTSEngine(lang_code) | |
else: | |
raise ValueError(f"Unsupported TTS engine type: {engine_type}") |