teachingAssistant / dia /layers.py
Michael Hu
add dia tts model. Since dia is not yet released to pypi, we pull in the source directly
9c4b958
raw
history blame
21.7 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
from huggingface_hub import PyTorchModelHubMixin
from torch import Tensor
from torch.nn import RMSNorm
from .config import DiaConfig
from .state import DecoderInferenceState, EncoderInferenceState, KVCache
def _normalize_axes(axes: tuple[int, ...], ndim: int) -> tuple[int, ...]:
return tuple(ax if ax >= 0 else ndim + ax for ax in axes)
class DenseGeneral(nn.Module):
"""
PyTorch equivalent of flax.linen.DenseGeneral with shapes defined at init.
Stores weights (`kernel`) in the same layout as Jax and uses torch.tensordot
for the generalized matrix multiplication. Weight/bias shapes are calculated
and parameters created during initialization based on config.
`load_weights` validates shapes and copies data.
Attributes:
axis (Tuple[int, ...]): Input axis or axes to contract.
in_shapes (Tuple[int, ...]): Sizes of the input dimensions specified by `axis`.
out_features (Tuple[int, ...]): Shape of the output features (non-contracted dims).
use_bias (bool): Whether to add a bias term.
weight (nn.Parameter): The kernel parameter.
bias (Optional[nn.Parameter]): The bias parameter (if use_bias=True).
"""
def __init__(
self,
in_shapes: tuple[int, ...],
out_features: tuple[int, ...],
axis: tuple[int, ...] = (-1,),
weight_dtype: torch.dtype | None = None,
device: torch.device | None = None,
):
super().__init__()
self.in_shapes = in_shapes
self.out_features = out_features
self.axis = axis
self.kernel_shape = self.in_shapes + self.out_features
factory_kwargs = {"device": device, "dtype": weight_dtype}
self.weight = nn.Parameter(torch.empty(self.kernel_shape, **factory_kwargs))
def forward(self, inputs: Tensor) -> Tensor:
norm_axis = _normalize_axes(self.axis, inputs.ndim)
kernel_contract_axes = tuple(range(len(norm_axis)))
output = torch.tensordot(
inputs.to(self.weight.dtype),
self.weight,
dims=(norm_axis, kernel_contract_axes),
).to(inputs.dtype)
return output
class MlpBlock(nn.Module):
"""MLP block using DenseGeneral."""
def __init__(self, embed_dim: int, intermediate_dim: int, compute_dtype: torch.dtype):
super().__init__()
self.dtype = compute_dtype
self.wi_fused = DenseGeneral(
in_shapes=(embed_dim,),
out_features=(2, intermediate_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.wo = DenseGeneral(
in_shapes=(intermediate_dim,),
out_features=(embed_dim,),
axis=(-1,),
weight_dtype=compute_dtype,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass."""
fused_x = self.wi_fused(x)
gate = fused_x[..., 0, :]
up = fused_x[..., 1, :]
hidden = torch.mul(F.silu(gate), up).to(self.dtype)
output = self.wo(hidden)
return output
class RotaryEmbedding(nn.Module):
"""Rotary Position Embedding (RoPE) implementation in PyTorch."""
def __init__(
self,
embedding_dims: int,
min_timescale: int = 1,
max_timescale: int = 10000,
dtype: torch.dtype = torch.float32,
):
super().__init__()
if embedding_dims % 2 != 0:
raise ValueError("Embedding dim must be even for RoPE.")
self.embedding_dims = embedding_dims
self.min_timescale = min_timescale
self.max_timescale = max_timescale
self.compute_dtype = dtype
half_embedding_dim = embedding_dims // 2
fraction = (2.0 * torch.arange(0, half_embedding_dim)) / embedding_dims
timescale = (self.min_timescale * (self.max_timescale / self.min_timescale) ** fraction).to(torch.float32)
self.register_buffer("timescale", timescale, persistent=False)
def forward(self, inputs: torch.Tensor, position: torch.Tensor):
"""Applies RoPE."""
position = position.unsqueeze(-1).unsqueeze(-1)
sinusoid_inp = position / self.timescale
sin = torch.sin(sinusoid_inp)
cos = torch.cos(sinusoid_inp)
first_half, second_half = torch.chunk(inputs.to(torch.float32), 2, dim=-1)
first_part = first_half * cos - second_half * sin
second_part = second_half * cos + first_half * sin
return torch.cat((first_part.to(self.compute_dtype), second_part.to(self.compute_dtype)), dim=-1)
class Attention(nn.Module):
"""Attention using DenseGeneral."""
def __init__(
self,
config: DiaConfig,
q_embed_dim: int,
kv_embed_dim: int,
num_query_heads: int,
num_kv_heads: int,
head_dim: int,
compute_dtype: torch.dtype,
is_cross_attn: bool = False,
out_embed_dim: int | None = None,
):
super().__init__()
self.num_query_heads = num_query_heads
self.num_kv_heads = num_kv_heads
self.head_dim = head_dim
self.is_cross_attn = is_cross_attn
self.output_dim = out_embed_dim if out_embed_dim is not None else q_embed_dim
self.projected_query_dim = num_query_heads * head_dim
if num_query_heads % num_kv_heads != 0:
raise ValueError(f"num_query_heads ({num_query_heads}) must be divisible by num_kv_heads ({num_kv_heads})")
self.num_gqa_groups = num_query_heads // num_kv_heads
# --- Projection Layers using DenseGeneral ---
self.q_proj = DenseGeneral(
in_shapes=(q_embed_dim,),
out_features=(num_query_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.k_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.v_proj = DenseGeneral(
in_shapes=(kv_embed_dim,),
out_features=(num_kv_heads, head_dim),
axis=(-1,),
weight_dtype=compute_dtype,
)
self.o_proj = DenseGeneral(
in_shapes=(num_query_heads, head_dim),
out_features=(self.output_dim,),
axis=(-2, -1),
weight_dtype=compute_dtype,
)
# --- Rotary Embedding ---
self.rotary_emb = RotaryEmbedding(
embedding_dims=self.head_dim,
min_timescale=config.model.rope_min_timescale,
max_timescale=config.model.rope_max_timescale,
dtype=compute_dtype,
)
def forward(
self,
Xq: torch.Tensor, # (B, T, D) T = 1 in AR generation
Xkv: torch.Tensor, # (B, S, E) S = 1 in AR generation
q_positions: torch.Tensor, # (B, T)
kv_positions: torch.Tensor | None = None, # (B, S)
attn_mask: torch.Tensor | None = None, # None in Decoder Self Attention, Valid mask in Others
cache: KVCache | None = None, # None in Encoder, KVCache in Decoder
prefill: bool = False,
is_causal: bool = False,
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
"""
Performs attention calculation with optional KV caching.
Args:
Xq: Query tensor (B, T, D). T=1 during single-step decoding.
Xkv: Key/Value source tensor (B, S, E). S=1 during single-step decoding for self-attn.
q_positions: Positions for queries (B, T).
kv_positions: Positions for keys/values (B, S). If None, uses q_positions.
attn_mask: Attention mask.
cache: KVCache.
prefill: If True, use prefill mode.
Returns:
A tuple containing:
- output: The attention output tensor (B, T, output_dim).
- present_kv: The K/V state to be cached for the next step ((B, N, S_new, H), (B, N, S_new, H)). For self-attn, S_new = S_past + S. For cross-attn, S_new = S_kv.
"""
if kv_positions is None:
kv_positions = q_positions
original_dtype = Xq.dtype
Xq_BxTxNxH = self.q_proj(Xq)
Xq_BxTxNxH = self.rotary_emb(Xq_BxTxNxH, position=q_positions)
Xq_BxNxTxH = Xq_BxTxNxH.transpose(1, 2)
attn_k: torch.Tensor | None = None
attn_v: torch.Tensor | None = None
if self.is_cross_attn:
attn_k, attn_v = cache.k, cache.v
else:
Xk_BxSxKxH = self.k_proj(Xkv) # (B, S, K, H)
Xv_BxSxKxH = self.v_proj(Xkv) # (B, S, K, H)
Xk_BxSxKxH = self.rotary_emb(Xk_BxSxKxH, position=kv_positions) # (B, S, K, H)
Xk_BxKxSxH = Xk_BxSxKxH.transpose(1, 2) # (B, K, S, H)
Xv_BxKxSxH = Xv_BxSxKxH.transpose(1, 2) # (B, K, S, H)
if cache is None:
attn_k = Xk_BxKxSxH
attn_v = Xv_BxKxSxH
else:
if prefill:
attn_k, attn_v = Xk_BxKxSxH, Xv_BxKxSxH
cache.prefill(attn_k, attn_v)
else:
attn_k, attn_v = cache.update(Xk_BxKxSxH, Xv_BxKxSxH)
attn_output = F.scaled_dot_product_attention(
Xq_BxNxTxH,
attn_k,
attn_v,
attn_mask=attn_mask,
scale=1.0,
enable_gqa=self.num_gqa_groups > 1,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous() # (B, T, N, H)
output = self.o_proj(attn_output)
return output.to(original_dtype)
class EncoderLayer(nn.Module):
"""Transformer Encoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
embed_dim = enc_config.n_embd
self.compute_dtype = compute_dtype
self.pre_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.self_attention = Attention(
config,
q_embed_dim=embed_dim,
kv_embed_dim=embed_dim,
num_query_heads=enc_config.n_head,
num_kv_heads=enc_config.n_head,
head_dim=enc_config.head_dim,
compute_dtype=compute_dtype,
is_cross_attn=False,
out_embed_dim=embed_dim,
)
self.post_sa_norm = RMSNorm(
embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.mlp = MlpBlock(embed_dim=embed_dim, intermediate_dim=enc_config.n_hidden, compute_dtype=compute_dtype)
def forward(
self,
x: torch.Tensor,
state: EncoderInferenceState,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
sa_out = self.self_attention(
Xq=x_norm,
Xkv=x_norm,
q_positions=state.positions,
kv_positions=state.positions,
attn_mask=state.attn_mask,
)
x = residual + sa_out
residual = x
x_norm = self.post_sa_norm(x).to(self.compute_dtype)
mlp_out = self.mlp(x_norm)
x = residual + mlp_out
return x
class Encoder(nn.Module):
"""Transformer Encoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
enc_config = config.model.encoder
self.compute_dtype = compute_dtype
self.embedding = nn.Embedding(
model_config.src_vocab_size,
enc_config.n_embd,
dtype=compute_dtype,
)
self.layers = nn.ModuleList([EncoderLayer(config, compute_dtype) for _ in range(enc_config.n_layer)])
self.norm = RMSNorm(
enc_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
def forward(
self,
x_ids: torch.Tensor,
state: EncoderInferenceState,
) -> torch.Tensor:
x = self.embedding(x_ids)
for layer in self.layers:
x = layer(x, state)
x = self.norm(x).to(self.compute_dtype)
return x
class DecoderLayer(nn.Module):
"""Transformer Decoder Layer using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
enc_config = config.model.encoder
dec_embed_dim = dec_config.n_embd
enc_embed_dim = enc_config.n_embd
self.compute_dtype = compute_dtype
# Norms
self.pre_sa_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_ca_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.pre_mlp_norm = RMSNorm(
dec_embed_dim,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
# Self-Attention (GQA) with Causal Masking
self.self_attention = Attention(
config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=dec_embed_dim,
num_query_heads=dec_config.gqa_query_heads,
num_kv_heads=dec_config.kv_heads,
head_dim=dec_config.gqa_head_dim,
compute_dtype=compute_dtype,
is_cross_attn=False,
out_embed_dim=dec_embed_dim,
)
# Cross-Attention (MHA)
self.cross_attention = Attention(
config=config,
q_embed_dim=dec_embed_dim,
kv_embed_dim=enc_embed_dim, # Note kv_embed_dim
num_query_heads=dec_config.cross_query_heads,
num_kv_heads=dec_config.cross_query_heads,
head_dim=dec_config.cross_head_dim,
compute_dtype=compute_dtype,
is_cross_attn=True,
out_embed_dim=dec_embed_dim,
)
# MLP
self.mlp = MlpBlock(
embed_dim=dec_embed_dim,
intermediate_dim=dec_config.n_hidden,
compute_dtype=compute_dtype,
)
def forward(
self,
x: torch.Tensor,
state: DecoderInferenceState,
self_attn_cache: KVCache | None = None,
cross_attn_cache: KVCache | None = None,
prefill: bool = False,
) -> torch.Tensor:
residual = x
x_norm = self.pre_sa_norm(x).to(self.compute_dtype)
sa_out = self.self_attention(
Xq=x_norm, # (2, 1, D)
Xkv=x_norm, # (2, 1, D)
q_positions=state.dec_positions, # (2, 1)
kv_positions=state.dec_positions, # (2, 1)
attn_mask=None,
cache=self_attn_cache,
prefill=prefill,
is_causal=prefill,
)
x = residual + sa_out
residual = x
x_norm = self.pre_ca_norm(x).to(self.compute_dtype)
ca_out = self.cross_attention(
Xq=x_norm,
Xkv=state.enc_out,
q_positions=state.dec_positions,
kv_positions=state.enc_positions,
attn_mask=state.dec_cross_attn_mask,
cache=cross_attn_cache,
)
x = residual + ca_out
residual = x
x_norm = self.pre_mlp_norm(x).to(self.compute_dtype)
mlp_out = self.mlp(x_norm)
x = residual + mlp_out
return x
class Decoder(nn.Module):
"""Transformer Decoder Stack using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
model_config = config.model
dec_config = config.model.decoder
data_config = config.data
self.num_channels = data_config.channels
self.num_layers = dec_config.n_layer
self.embeddings = nn.ModuleList(
[
nn.Embedding(model_config.tgt_vocab_size, dec_config.n_embd, dtype=compute_dtype)
for _ in range(self.num_channels)
]
)
self.layers = nn.ModuleList(
[DecoderLayer(config=config, compute_dtype=compute_dtype) for _ in range(self.num_layers)]
)
self.norm = RMSNorm(
dec_config.n_embd,
eps=model_config.normalization_layer_epsilon,
dtype=torch.float32,
)
self.logits_dense = DenseGeneral(
in_shapes=(dec_config.n_embd,),
out_features=(self.num_channels, model_config.tgt_vocab_size),
axis=(-1,),
weight_dtype=compute_dtype,
)
def precompute_cross_attn_cache(
self,
enc_out: torch.Tensor, # (B, S, E)
enc_positions: torch.Tensor, # (B, S)
) -> list[KVCache]:
"""
Computes the Key and Value tensors for cross-attention for each layer from the encoder output.
"""
per_layer_kv_cache: list[KVCache] = []
for layer in self.layers:
cross_attn_module = layer.cross_attention
k_proj = cross_attn_module.k_proj(enc_out)
v_proj = cross_attn_module.v_proj(enc_out)
k_proj = cross_attn_module.rotary_emb(k_proj, position=enc_positions)
k = k_proj.transpose(1, 2)
v = v_proj.transpose(1, 2)
per_layer_kv_cache.append(KVCache.from_kv(k, v))
return per_layer_kv_cache
def decode_step(
self,
tgt_ids_Bx1xC: torch.Tensor, # [B, 1, C]
state: DecoderInferenceState,
) -> torch.Tensor:
"""
Performs a single decoding step, managing KV caches layer by layer.
Returns:
A tuple containing:
- logits_Bx1xCV: The final output logits for the current step (B, 1, C*V), cast to float32.
"""
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_Bx1xC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
for i, layer in enumerate(self.layers):
self_cache = state.self_attn_cache[i]
cross_cache = state.cross_attn_cache[i]
x = layer(
x, # (2, 1, D)
state,
self_attn_cache=self_cache,
cross_attn_cache=cross_cache,
)
x = self.norm(x)
logits_Bx1xCxV = self.logits_dense(x)
return logits_Bx1xCxV.to(torch.float32)
def forward(self, tgt_ids_BxTxC: torch.Tensor, state: DecoderInferenceState) -> torch.Tensor:
"""
Forward pass for the Decoder stack, managing KV caches.
Args:
tgt_ids_BxTxC: Target token IDs (B, T, C).
encoder_out: Output from the encoder (B, S, E).
tgt_positions: Positions for target sequence (B, T).
src_positions: Positions for source sequence (B, S).
self_attn_mask: Mask for self-attention.
cross_attn_mask: Mask for cross-attention.
past_key_values: List containing the self-attention KV cache for each layer
from the previous decoding step. `len(past_key_values)` should
equal `num_layers`.
precomputed_cross_attn_kv: A single tuple containing the pre-computed K/V cache
derived from `encoder_out`. This is passed identically
to all layers.
Returns:
A tuple containing:
- logits: The final output logits (B, T, C * V), cast to float32.
- present_key_values: A list containing the updated self-attention KV cache
for each layer for the *current* decoding step.
"""
_, _, num_channels_in = tgt_ids_BxTxC.shape
assert num_channels_in == self.num_channels, "Input channels mismatch"
# Embeddings
x = None
for i in range(self.num_channels):
channel_tokens = tgt_ids_BxTxC[..., i]
channel_embed = self.embeddings[i](channel_tokens)
x = channel_embed if x is None else x + channel_embed
for i, layer in enumerate(self.layers):
self_cache = state.self_attn_cache[i]
cross_cache = state.cross_attn_cache[i]
x = layer(x, state, self_attn_cache=self_cache, cross_attn_cache=cross_cache, prefill=True)
# Final Norm
x = self.norm(x)
logits_BxTxCxV = self.logits_dense(x)
return logits_BxTxCxV.to(torch.float32)
class DiaModel(
nn.Module,
PyTorchModelHubMixin,
repo_url="https://github.com/nari-labs/dia",
pipeline_tag="text-to-speech",
license="apache-2.0",
coders={
DiaConfig: (
lambda x: x.model_dump(),
lambda data: DiaConfig.model_validate(data),
),
},
):
"""PyTorch Dia Model using DenseGeneral."""
def __init__(self, config: DiaConfig, compute_dtype: torch.dtype):
super().__init__()
self.config = config
self.encoder = Encoder(config, compute_dtype)
self.decoder = Decoder(config, compute_dtype)