Michael Hu
enhance logging
91223c9
raw
history blame
8.77 kB
import os
import time
import logging
import torch
import numpy as np
import soundfile as sf
from pathlib import Path
from typing import Optional
from dia.model import Dia
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
DEFAULT_SAMPLE_RATE = 44100
DEFAULT_MODEL_NAME = "nari-labs/Dia-1.6B"
# Global model instance (lazy loaded)
_model = None
def _get_model() -> Dia:
"""Lazy-load the Dia model to avoid loading it until needed"""
global _model
if _model is None:
logger.info("Loading Dia model...")
try:
# Check if torch is available with correct version
logger.info(f"PyTorch version: {torch.__version__}")
logger.info(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"GPU device: {torch.cuda.get_device_name(0)}")
# Check if model path exists
logger.info(f"Attempting to load model from: {DEFAULT_MODEL_NAME}")
# Load the model with detailed logging
logger.info("Initializing Dia model...")
_model = Dia.from_pretrained(DEFAULT_MODEL_NAME, compute_dtype="float16")
# Log model details
logger.info(f"Dia model loaded successfully")
logger.info(f"Model type: {type(_model).__name__}")
logger.info(f"Model device: {next(_model.parameters()).device}")
except ImportError as import_err:
logger.error(f"Import error loading Dia model: {import_err}")
logger.error(f"This may indicate missing dependencies")
raise
except FileNotFoundError as file_err:
logger.error(f"File not found error loading Dia model: {file_err}")
logger.error(f"Model path may be incorrect or inaccessible")
raise
except Exception as e:
logger.error(f"Error loading Dia model: {e}", exc_info=True)
logger.error(f"Error type: {type(e).__name__}")
logger.error(f"This may indicate incompatible versions or missing CUDA support")
raise
return _model
def generate_speech(text: str, language: str = "zh") -> str:
"""Public interface for TTS generation using Dia model
Args:
text (str): Input text to synthesize
language (str): Language code (not used in Dia model, kept for API compatibility)
Returns:
str: Path to the generated audio file
"""
logger.info(f"Generating speech for text length: {len(text)}")
logger.info(f"Text content (first 50 chars): {text[:50]}...")
try:
# Create output directory if it doesn't exist
output_dir = "temp/outputs"
logger.info(f"Ensuring output directory exists: {output_dir}")
try:
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Output directory ready: {output_dir}")
except PermissionError as perm_err:
logger.error(f"Permission error creating output directory: {perm_err}")
raise
except Exception as dir_err:
logger.error(f"Error creating output directory: {dir_err}")
raise
# Generate unique output path
timestamp = int(time.time())
output_path = f"{output_dir}/output_{timestamp}.wav"
logger.info(f"Output will be saved to: {output_path}")
# Get the model
logger.info("Retrieving Dia model instance")
try:
model = _get_model()
logger.info("Successfully retrieved Dia model instance")
except Exception as model_err:
logger.error(f"Failed to get Dia model: {model_err}")
logger.error(f"Error type: {type(model_err).__name__}")
raise
# Generate audio
logger.info("Starting audio generation with Dia model")
start_time = time.time()
try:
with torch.inference_mode():
logger.info("Calling model.generate() with inference_mode")
output_audio_np = model.generate(
text,
max_tokens=None, # Use default from model config
cfg_scale=3.0,
temperature=1.3,
top_p=0.95,
cfg_filter_top_k=35,
use_torch_compile=False, # Keep False for stability
verbose=False
)
logger.info("Model.generate() completed")
except RuntimeError as rt_err:
logger.error(f"Runtime error during generation: {rt_err}")
if "CUDA out of memory" in str(rt_err):
logger.error("CUDA out of memory error - consider reducing batch size or model size")
raise
except Exception as gen_err:
logger.error(f"Error during audio generation: {gen_err}")
logger.error(f"Error type: {type(gen_err).__name__}")
raise
end_time = time.time()
generation_time = end_time - start_time
logger.info(f"Generation finished in {generation_time:.2f} seconds")
# Process the output
if output_audio_np is not None:
logger.info(f"Generated audio array shape: {output_audio_np.shape}, dtype: {output_audio_np.dtype}")
logger.info(f"Audio stats - min: {output_audio_np.min():.4f}, max: {output_audio_np.max():.4f}, mean: {output_audio_np.mean():.4f}")
# Apply a slight slowdown for better quality (0.94x speed)
speed_factor = 0.94
original_len = len(output_audio_np)
target_len = int(original_len / speed_factor)
logger.info(f"Applying speed adjustment factor: {speed_factor}")
if target_len != original_len and target_len > 0:
try:
x_original = np.arange(original_len)
x_resampled = np.linspace(0, original_len - 1, target_len)
output_audio_np = np.interp(x_resampled, x_original, output_audio_np)
logger.info(f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed")
except Exception as resample_err:
logger.error(f"Error during audio resampling: {resample_err}")
logger.warning("Using original audio without resampling")
# Save the audio file
logger.info(f"Saving audio to file: {output_path}")
try:
sf.write(output_path, output_audio_np, DEFAULT_SAMPLE_RATE)
logger.info(f"Audio successfully saved to {output_path}")
except Exception as save_err:
logger.error(f"Error saving audio file: {save_err}")
logger.error(f"Error type: {type(save_err).__name__}")
raise
return output_path
else:
logger.warning("Generation produced no output (None returned from model)")
logger.warning("This may indicate a model configuration issue or empty input text")
dummy_path = f"{output_dir}/dummy_{timestamp}.wav"
logger.warning(f"Returning dummy audio path: {dummy_path}")
return dummy_path
except Exception as e:
logger.error(f"TTS generation failed: {str(e)}", exc_info=True)
logger.error(f"Error type: {type(e).__name__}")
# Log additional diagnostic information based on error type
if isinstance(e, ImportError):
logger.error(f"Import error - missing dependency: {e.__class__.__module__}.{e.__class__.__name__}")
logger.error("Check if all required packages are installed correctly")
elif isinstance(e, RuntimeError) and "CUDA" in str(e):
logger.error("CUDA-related runtime error - check GPU compatibility and memory")
elif isinstance(e, AttributeError):
logger.error(f"Attribute error - likely API incompatibility or incorrect module version")
if hasattr(e, '__traceback__'):
tb = e.__traceback__
while tb.tb_next:
tb = tb.tb_next
logger.error(f"Error occurred in file: {tb.tb_frame.f_code.co_filename}, line {tb.tb_lineno}")
elif isinstance(e, FileNotFoundError):
logger.error(f"File not found - check if model files exist and are accessible")
# Return dummy path in case of error
return "temp/outputs/dummy.wav"