Spaces:
Running
Running
Michael Hu
commited on
Commit
·
0ee4f42
1
Parent(s):
e68cae8
support nvdia Parakeet TDT ASR
Browse files- app.py +17 -5
- requirements.txt +3 -1
- utils/stt.py +129 -30
app.py
CHANGED
@@ -44,14 +44,18 @@ def configure_page():
|
|
44 |
</style>
|
45 |
""", unsafe_allow_html=True)
|
46 |
|
47 |
-
def handle_file_processing(upload_path):
|
48 |
"""
|
49 |
Execute the complete processing pipeline:
|
50 |
1. Speech-to-Text (STT)
|
51 |
2. Machine Translation
|
52 |
3. Text-to-Speech (TTS)
|
|
|
|
|
|
|
|
|
53 |
"""
|
54 |
-
logger.info(f"Starting processing for: {upload_path}")
|
55 |
progress_bar = st.progress(0)
|
56 |
status_text = st.empty()
|
57 |
|
@@ -59,8 +63,8 @@ def handle_file_processing(upload_path):
|
|
59 |
# STT Phase
|
60 |
logger.info("Beginning STT processing")
|
61 |
status_text.markdown("🔍 **Performing Speech Recognition...**")
|
62 |
-
with st.spinner("Initializing
|
63 |
-
english_text = transcribe_audio(upload_path)
|
64 |
progress_bar.progress(30)
|
65 |
logger.info(f"STT completed. Text length: {len(english_text)} characters")
|
66 |
|
@@ -172,6 +176,14 @@ def main():
|
|
172 |
format_func=lambda x: x
|
173 |
)
|
174 |
speed = st.sidebar.slider("Speech Speed", 0.5, 2.0, 1.0, 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
uploaded_file = st.file_uploader(
|
177 |
"Select Audio File (MP3/WAV)",
|
@@ -185,7 +197,7 @@ def main():
|
|
185 |
with open(upload_path, "wb") as f:
|
186 |
f.write(uploaded_file.getbuffer())
|
187 |
|
188 |
-
results = handle_file_processing(upload_path)
|
189 |
if results:
|
190 |
render_results(*results)
|
191 |
|
|
|
44 |
</style>
|
45 |
""", unsafe_allow_html=True)
|
46 |
|
47 |
+
def handle_file_processing(upload_path, asr_model="whisper"):
|
48 |
"""
|
49 |
Execute the complete processing pipeline:
|
50 |
1. Speech-to-Text (STT)
|
51 |
2. Machine Translation
|
52 |
3. Text-to-Speech (TTS)
|
53 |
+
|
54 |
+
Args:
|
55 |
+
upload_path: Path to the uploaded audio file
|
56 |
+
asr_model: ASR model to use (whisper or parakeet)
|
57 |
"""
|
58 |
+
logger.info(f"Starting processing for: {upload_path} using {asr_model} model")
|
59 |
progress_bar = st.progress(0)
|
60 |
status_text = st.empty()
|
61 |
|
|
|
63 |
# STT Phase
|
64 |
logger.info("Beginning STT processing")
|
65 |
status_text.markdown("🔍 **Performing Speech Recognition...**")
|
66 |
+
with st.spinner(f"Initializing {asr_model.capitalize()} model..."):
|
67 |
+
english_text = transcribe_audio(upload_path, model_name=asr_model)
|
68 |
progress_bar.progress(30)
|
69 |
logger.info(f"STT completed. Text length: {len(english_text)} characters")
|
70 |
|
|
|
176 |
format_func=lambda x: x
|
177 |
)
|
178 |
speed = st.sidebar.slider("Speech Speed", 0.5, 2.0, 1.0, 0.1)
|
179 |
+
|
180 |
+
# Model selection
|
181 |
+
asr_model = st.selectbox(
|
182 |
+
"Select Speech Recognition Model",
|
183 |
+
options=["whisper", "parakeet"],
|
184 |
+
index=0,
|
185 |
+
help="Choose the ASR model for speech recognition"
|
186 |
+
)
|
187 |
|
188 |
uploaded_file = st.file_uploader(
|
189 |
"Select Audio File (MP3/WAV)",
|
|
|
197 |
with open(upload_path, "wb") as f:
|
198 |
f.write(uploaded_file.getbuffer())
|
199 |
|
200 |
+
results = handle_file_processing(upload_path, asr_model=asr_model)
|
201 |
if results:
|
202 |
render_results(*results)
|
203 |
|
requirements.txt
CHANGED
@@ -12,4 +12,6 @@ accelerate>=1.2.0
|
|
12 |
soundfile>=0.13.0
|
13 |
kokoro>=0.7.9
|
14 |
ordered-set>=4.1.0
|
15 |
-
phonemizer-fork>=3.3.2
|
|
|
|
|
|
12 |
soundfile>=0.13.0
|
13 |
kokoro>=0.7.9
|
14 |
ordered-set>=4.1.0
|
15 |
+
phonemizer-fork>=3.3.2
|
16 |
+
# NeMo Toolkit with ASR support
|
17 |
+
nemo_toolkit[asr]
|
utils/stt.py
CHANGED
@@ -1,51 +1,77 @@
|
|
1 |
"""
|
2 |
-
Speech Recognition Module
|
|
|
3 |
Handles audio preprocessing and transcription
|
4 |
"""
|
5 |
|
6 |
import logging
|
7 |
import numpy as np
|
|
|
|
|
|
|
8 |
logger = logging.getLogger(__name__)
|
9 |
|
10 |
import torch
|
11 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
12 |
from pydub import AudioSegment
|
13 |
-
import soundfile as sf
|
14 |
|
15 |
-
|
16 |
-
"""
|
17 |
-
Convert audio file to text using Whisper ASR model
|
18 |
-
Args:
|
19 |
-
audio_path: Path to input audio file
|
20 |
-
Returns:
|
21 |
-
Transcribed English text
|
22 |
-
"""
|
23 |
-
logger.info(f"Starting transcription for: {audio_path}")
|
24 |
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
logger.info("Converting audio format")
|
28 |
audio = AudioSegment.from_file(audio_path)
|
29 |
processed_audio = audio.set_frame_rate(16000).set_channels(1)
|
30 |
-
wav_path = audio_path.replace(".mp3", ".wav")
|
|
|
|
|
31 |
processed_audio.export(wav_path, format="wav")
|
32 |
logger.info(f"Audio converted to: {wav_path}")
|
|
|
33 |
|
34 |
-
# Model initialization
|
35 |
-
logger.info("Loading Whisper model")
|
36 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
-
logger.info(f"Using device: {device}")
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
"openai/whisper-large-v3",
|
41 |
torch_dtype=torch.float32,
|
42 |
low_cpu_mem_usage=True,
|
43 |
use_safetensors=True
|
44 |
-
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
47 |
-
logger.info("Model loaded successfully")
|
48 |
-
|
49 |
# Processing
|
50 |
logger.info("Processing audio input")
|
51 |
logger.debug("Loading audio data")
|
@@ -53,20 +79,20 @@ def transcribe_audio(audio_path):
|
|
53 |
audio_data = audio_data.astype(np.float32)
|
54 |
|
55 |
# Increase chunk length and stride for longer transcriptions
|
56 |
-
inputs = processor(
|
57 |
audio_data,
|
58 |
sampling_rate=16000,
|
59 |
return_tensors="pt",
|
60 |
# Increase chunk length to handle longer segments
|
61 |
-
chunk_length_s=60,
|
62 |
-
stride_length_s=10
|
63 |
-
).to(device)
|
64 |
|
65 |
# Transcription
|
66 |
logger.info("Generating transcription")
|
67 |
with torch.no_grad():
|
68 |
# Add max_length parameter to allow for longer outputs
|
69 |
-
outputs = model.generate(
|
70 |
**inputs,
|
71 |
language="en",
|
72 |
task="transcribe",
|
@@ -74,11 +100,84 @@ def transcribe_audio(audio_path):
|
|
74 |
no_repeat_ngram_size=3 # Prevent repetition in output
|
75 |
)
|
76 |
|
77 |
-
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
78 |
-
logger.info(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
logger.info(f"Transcription completed successfully")
|
80 |
return result
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
logger.error(f"Transcription failed: {str(e)}", exc_info=True)
|
84 |
raise
|
|
|
1 |
"""
|
2 |
+
Speech Recognition Module
|
3 |
+
Supports multiple ASR models including Whisper and Parakeet
|
4 |
Handles audio preprocessing and transcription
|
5 |
"""
|
6 |
|
7 |
import logging
|
8 |
import numpy as np
|
9 |
+
import os
|
10 |
+
from abc import ABC, abstractmethod
|
11 |
+
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
14 |
import torch
|
15 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
16 |
from pydub import AudioSegment
|
17 |
+
import soundfile as sf
|
18 |
|
19 |
+
class ASRModel(ABC):
|
20 |
+
"""Base class for ASR models"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
@abstractmethod
|
23 |
+
def load_model(self):
|
24 |
+
"""Load the ASR model"""
|
25 |
+
pass
|
26 |
+
|
27 |
+
@abstractmethod
|
28 |
+
def transcribe(self, audio_path):
|
29 |
+
"""Transcribe audio to text"""
|
30 |
+
pass
|
31 |
+
|
32 |
+
def preprocess_audio(self, audio_path):
|
33 |
+
"""Convert audio to required format"""
|
34 |
logger.info("Converting audio format")
|
35 |
audio = AudioSegment.from_file(audio_path)
|
36 |
processed_audio = audio.set_frame_rate(16000).set_channels(1)
|
37 |
+
wav_path = audio_path.replace(".mp3", ".wav") if audio_path.endswith(".mp3") else audio_path
|
38 |
+
if not wav_path.endswith(".wav"):
|
39 |
+
wav_path = f"{os.path.splitext(wav_path)[0]}.wav"
|
40 |
processed_audio.export(wav_path, format="wav")
|
41 |
logger.info(f"Audio converted to: {wav_path}")
|
42 |
+
return wav_path
|
43 |
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
class WhisperModel(ASRModel):
|
46 |
+
"""Whisper ASR model implementation"""
|
47 |
+
|
48 |
+
def __init__(self):
|
49 |
+
self.model = None
|
50 |
+
self.processor = None
|
51 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
52 |
+
|
53 |
+
def load_model(self):
|
54 |
+
"""Load Whisper model"""
|
55 |
+
logger.info("Loading Whisper model")
|
56 |
+
logger.info(f"Using device: {self.device}")
|
57 |
+
|
58 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
59 |
"openai/whisper-large-v3",
|
60 |
torch_dtype=torch.float32,
|
61 |
low_cpu_mem_usage=True,
|
62 |
use_safetensors=True
|
63 |
+
).to(self.device)
|
64 |
+
|
65 |
+
self.processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
66 |
+
logger.info("Whisper model loaded successfully")
|
67 |
+
|
68 |
+
def transcribe(self, audio_path):
|
69 |
+
"""Transcribe audio using Whisper"""
|
70 |
+
if self.model is None or self.processor is None:
|
71 |
+
self.load_model()
|
72 |
+
|
73 |
+
wav_path = self.preprocess_audio(audio_path)
|
74 |
|
|
|
|
|
|
|
75 |
# Processing
|
76 |
logger.info("Processing audio input")
|
77 |
logger.debug("Loading audio data")
|
|
|
79 |
audio_data = audio_data.astype(np.float32)
|
80 |
|
81 |
# Increase chunk length and stride for longer transcriptions
|
82 |
+
inputs = self.processor(
|
83 |
audio_data,
|
84 |
sampling_rate=16000,
|
85 |
return_tensors="pt",
|
86 |
# Increase chunk length to handle longer segments
|
87 |
+
chunk_length_s=60,
|
88 |
+
stride_length_s=10
|
89 |
+
).to(self.device)
|
90 |
|
91 |
# Transcription
|
92 |
logger.info("Generating transcription")
|
93 |
with torch.no_grad():
|
94 |
# Add max_length parameter to allow for longer outputs
|
95 |
+
outputs = self.model.generate(
|
96 |
**inputs,
|
97 |
language="en",
|
98 |
task="transcribe",
|
|
|
100 |
no_repeat_ngram_size=3 # Prevent repetition in output
|
101 |
)
|
102 |
|
103 |
+
result = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
104 |
+
logger.info(f"Transcription completed successfully")
|
105 |
+
return result
|
106 |
+
|
107 |
+
|
108 |
+
class ParakeetModel(ASRModel):
|
109 |
+
"""Parakeet ASR model implementation"""
|
110 |
+
|
111 |
+
def __init__(self):
|
112 |
+
self.model = None
|
113 |
+
|
114 |
+
def load_model(self):
|
115 |
+
"""Load Parakeet model"""
|
116 |
+
try:
|
117 |
+
import nemo.collections.asr as nemo_asr
|
118 |
+
logger.info("Loading Parakeet model")
|
119 |
+
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v2")
|
120 |
+
logger.info("Parakeet model loaded successfully")
|
121 |
+
except ImportError:
|
122 |
+
logger.error("Failed to import nemo_toolkit. Please install with: pip install -U 'nemo_toolkit[asr]'")
|
123 |
+
raise
|
124 |
+
|
125 |
+
def transcribe(self, audio_path):
|
126 |
+
"""Transcribe audio using Parakeet"""
|
127 |
+
if self.model is None:
|
128 |
+
self.load_model()
|
129 |
+
|
130 |
+
wav_path = self.preprocess_audio(audio_path)
|
131 |
+
|
132 |
+
# Transcription
|
133 |
+
logger.info("Generating transcription with Parakeet")
|
134 |
+
output = self.model.transcribe([wav_path])
|
135 |
+
result = output[0].text
|
136 |
logger.info(f"Transcription completed successfully")
|
137 |
return result
|
138 |
|
139 |
+
|
140 |
+
class ASRFactory:
|
141 |
+
"""Factory for creating ASR model instances"""
|
142 |
+
|
143 |
+
@staticmethod
|
144 |
+
def get_model(model_name="whisper"):
|
145 |
+
"""
|
146 |
+
Get ASR model by name
|
147 |
+
Args:
|
148 |
+
model_name: Name of the model to use (whisper or parakeet)
|
149 |
+
Returns:
|
150 |
+
ASR model instance
|
151 |
+
"""
|
152 |
+
if model_name.lower() == "whisper":
|
153 |
+
return WhisperModel()
|
154 |
+
elif model_name.lower() == "parakeet":
|
155 |
+
return ParakeetModel()
|
156 |
+
else:
|
157 |
+
logger.warning(f"Unknown model: {model_name}, falling back to Whisper")
|
158 |
+
return WhisperModel()
|
159 |
+
|
160 |
+
|
161 |
+
def transcribe_audio(audio_path, model_name="whisper"):
|
162 |
+
"""
|
163 |
+
Convert audio file to text using specified ASR model
|
164 |
+
Args:
|
165 |
+
audio_path: Path to input audio file
|
166 |
+
model_name: Name of the ASR model to use (whisper or parakeet)
|
167 |
+
Returns:
|
168 |
+
Transcribed English text
|
169 |
+
"""
|
170 |
+
logger.info(f"Starting transcription for: {audio_path} using {model_name} model")
|
171 |
+
|
172 |
+
try:
|
173 |
+
# Get the appropriate model
|
174 |
+
asr_model = ASRFactory.get_model(model_name)
|
175 |
+
|
176 |
+
# Transcribe audio
|
177 |
+
result = asr_model.transcribe(audio_path)
|
178 |
+
logger.info(f"transcription: %s" % result)
|
179 |
+
return result
|
180 |
+
|
181 |
except Exception as e:
|
182 |
logger.error(f"Transcription failed: {str(e)}", exc_info=True)
|
183 |
raise
|