Spaces:
Sleeping
Sleeping
Michael Hu
commited on
Commit
·
0ee4f42
1
Parent(s):
e68cae8
support nvdia Parakeet TDT ASR
Browse files- app.py +17 -5
- requirements.txt +3 -1
- utils/stt.py +129 -30
app.py
CHANGED
|
@@ -44,14 +44,18 @@ def configure_page():
|
|
| 44 |
</style>
|
| 45 |
""", unsafe_allow_html=True)
|
| 46 |
|
| 47 |
-
def handle_file_processing(upload_path):
|
| 48 |
"""
|
| 49 |
Execute the complete processing pipeline:
|
| 50 |
1. Speech-to-Text (STT)
|
| 51 |
2. Machine Translation
|
| 52 |
3. Text-to-Speech (TTS)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
"""
|
| 54 |
-
logger.info(f"Starting processing for: {upload_path}")
|
| 55 |
progress_bar = st.progress(0)
|
| 56 |
status_text = st.empty()
|
| 57 |
|
|
@@ -59,8 +63,8 @@ def handle_file_processing(upload_path):
|
|
| 59 |
# STT Phase
|
| 60 |
logger.info("Beginning STT processing")
|
| 61 |
status_text.markdown("🔍 **Performing Speech Recognition...**")
|
| 62 |
-
with st.spinner("Initializing
|
| 63 |
-
english_text = transcribe_audio(upload_path)
|
| 64 |
progress_bar.progress(30)
|
| 65 |
logger.info(f"STT completed. Text length: {len(english_text)} characters")
|
| 66 |
|
|
@@ -172,6 +176,14 @@ def main():
|
|
| 172 |
format_func=lambda x: x
|
| 173 |
)
|
| 174 |
speed = st.sidebar.slider("Speech Speed", 0.5, 2.0, 1.0, 0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
uploaded_file = st.file_uploader(
|
| 177 |
"Select Audio File (MP3/WAV)",
|
|
@@ -185,7 +197,7 @@ def main():
|
|
| 185 |
with open(upload_path, "wb") as f:
|
| 186 |
f.write(uploaded_file.getbuffer())
|
| 187 |
|
| 188 |
-
results = handle_file_processing(upload_path)
|
| 189 |
if results:
|
| 190 |
render_results(*results)
|
| 191 |
|
|
|
|
| 44 |
</style>
|
| 45 |
""", unsafe_allow_html=True)
|
| 46 |
|
| 47 |
+
def handle_file_processing(upload_path, asr_model="whisper"):
|
| 48 |
"""
|
| 49 |
Execute the complete processing pipeline:
|
| 50 |
1. Speech-to-Text (STT)
|
| 51 |
2. Machine Translation
|
| 52 |
3. Text-to-Speech (TTS)
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
upload_path: Path to the uploaded audio file
|
| 56 |
+
asr_model: ASR model to use (whisper or parakeet)
|
| 57 |
"""
|
| 58 |
+
logger.info(f"Starting processing for: {upload_path} using {asr_model} model")
|
| 59 |
progress_bar = st.progress(0)
|
| 60 |
status_text = st.empty()
|
| 61 |
|
|
|
|
| 63 |
# STT Phase
|
| 64 |
logger.info("Beginning STT processing")
|
| 65 |
status_text.markdown("🔍 **Performing Speech Recognition...**")
|
| 66 |
+
with st.spinner(f"Initializing {asr_model.capitalize()} model..."):
|
| 67 |
+
english_text = transcribe_audio(upload_path, model_name=asr_model)
|
| 68 |
progress_bar.progress(30)
|
| 69 |
logger.info(f"STT completed. Text length: {len(english_text)} characters")
|
| 70 |
|
|
|
|
| 176 |
format_func=lambda x: x
|
| 177 |
)
|
| 178 |
speed = st.sidebar.slider("Speech Speed", 0.5, 2.0, 1.0, 0.1)
|
| 179 |
+
|
| 180 |
+
# Model selection
|
| 181 |
+
asr_model = st.selectbox(
|
| 182 |
+
"Select Speech Recognition Model",
|
| 183 |
+
options=["whisper", "parakeet"],
|
| 184 |
+
index=0,
|
| 185 |
+
help="Choose the ASR model for speech recognition"
|
| 186 |
+
)
|
| 187 |
|
| 188 |
uploaded_file = st.file_uploader(
|
| 189 |
"Select Audio File (MP3/WAV)",
|
|
|
|
| 197 |
with open(upload_path, "wb") as f:
|
| 198 |
f.write(uploaded_file.getbuffer())
|
| 199 |
|
| 200 |
+
results = handle_file_processing(upload_path, asr_model=asr_model)
|
| 201 |
if results:
|
| 202 |
render_results(*results)
|
| 203 |
|
requirements.txt
CHANGED
|
@@ -12,4 +12,6 @@ accelerate>=1.2.0
|
|
| 12 |
soundfile>=0.13.0
|
| 13 |
kokoro>=0.7.9
|
| 14 |
ordered-set>=4.1.0
|
| 15 |
-
phonemizer-fork>=3.3.2
|
|
|
|
|
|
|
|
|
| 12 |
soundfile>=0.13.0
|
| 13 |
kokoro>=0.7.9
|
| 14 |
ordered-set>=4.1.0
|
| 15 |
+
phonemizer-fork>=3.3.2
|
| 16 |
+
# NeMo Toolkit with ASR support
|
| 17 |
+
nemo_toolkit[asr]
|
utils/stt.py
CHANGED
|
@@ -1,51 +1,77 @@
|
|
| 1 |
"""
|
| 2 |
-
Speech Recognition Module
|
|
|
|
| 3 |
Handles audio preprocessing and transcription
|
| 4 |
"""
|
| 5 |
|
| 6 |
import logging
|
| 7 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
import torch
|
| 11 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 12 |
from pydub import AudioSegment
|
| 13 |
-
import soundfile as sf
|
| 14 |
|
| 15 |
-
|
| 16 |
-
"""
|
| 17 |
-
Convert audio file to text using Whisper ASR model
|
| 18 |
-
Args:
|
| 19 |
-
audio_path: Path to input audio file
|
| 20 |
-
Returns:
|
| 21 |
-
Transcribed English text
|
| 22 |
-
"""
|
| 23 |
-
logger.info(f"Starting transcription for: {audio_path}")
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
logger.info("Converting audio format")
|
| 28 |
audio = AudioSegment.from_file(audio_path)
|
| 29 |
processed_audio = audio.set_frame_rate(16000).set_channels(1)
|
| 30 |
-
wav_path = audio_path.replace(".mp3", ".wav")
|
|
|
|
|
|
|
| 31 |
processed_audio.export(wav_path, format="wav")
|
| 32 |
logger.info(f"Audio converted to: {wav_path}")
|
|
|
|
| 33 |
|
| 34 |
-
# Model initialization
|
| 35 |
-
logger.info("Loading Whisper model")
|
| 36 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 37 |
-
logger.info(f"Using device: {device}")
|
| 38 |
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"openai/whisper-large-v3",
|
| 41 |
torch_dtype=torch.float32,
|
| 42 |
low_cpu_mem_usage=True,
|
| 43 |
use_safetensors=True
|
| 44 |
-
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
| 47 |
-
logger.info("Model loaded successfully")
|
| 48 |
-
|
| 49 |
# Processing
|
| 50 |
logger.info("Processing audio input")
|
| 51 |
logger.debug("Loading audio data")
|
|
@@ -53,20 +79,20 @@ def transcribe_audio(audio_path):
|
|
| 53 |
audio_data = audio_data.astype(np.float32)
|
| 54 |
|
| 55 |
# Increase chunk length and stride for longer transcriptions
|
| 56 |
-
inputs = processor(
|
| 57 |
audio_data,
|
| 58 |
sampling_rate=16000,
|
| 59 |
return_tensors="pt",
|
| 60 |
# Increase chunk length to handle longer segments
|
| 61 |
-
chunk_length_s=60,
|
| 62 |
-
stride_length_s=10
|
| 63 |
-
).to(device)
|
| 64 |
|
| 65 |
# Transcription
|
| 66 |
logger.info("Generating transcription")
|
| 67 |
with torch.no_grad():
|
| 68 |
# Add max_length parameter to allow for longer outputs
|
| 69 |
-
outputs = model.generate(
|
| 70 |
**inputs,
|
| 71 |
language="en",
|
| 72 |
task="transcribe",
|
|
@@ -74,11 +100,84 @@ def transcribe_audio(audio_path):
|
|
| 74 |
no_repeat_ngram_size=3 # Prevent repetition in output
|
| 75 |
)
|
| 76 |
|
| 77 |
-
result = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 78 |
-
logger.info(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
logger.info(f"Transcription completed successfully")
|
| 80 |
return result
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
except Exception as e:
|
| 83 |
logger.error(f"Transcription failed: {str(e)}", exc_info=True)
|
| 84 |
raise
|
|
|
|
| 1 |
"""
|
| 2 |
+
Speech Recognition Module
|
| 3 |
+
Supports multiple ASR models including Whisper and Parakeet
|
| 4 |
Handles audio preprocessing and transcription
|
| 5 |
"""
|
| 6 |
|
| 7 |
import logging
|
| 8 |
import numpy as np
|
| 9 |
+
import os
|
| 10 |
+
from abc import ABC, abstractmethod
|
| 11 |
+
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
| 14 |
import torch
|
| 15 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 16 |
from pydub import AudioSegment
|
| 17 |
+
import soundfile as sf
|
| 18 |
|
| 19 |
+
class ASRModel(ABC):
|
| 20 |
+
"""Base class for ASR models"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
@abstractmethod
|
| 23 |
+
def load_model(self):
|
| 24 |
+
"""Load the ASR model"""
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
@abstractmethod
|
| 28 |
+
def transcribe(self, audio_path):
|
| 29 |
+
"""Transcribe audio to text"""
|
| 30 |
+
pass
|
| 31 |
+
|
| 32 |
+
def preprocess_audio(self, audio_path):
|
| 33 |
+
"""Convert audio to required format"""
|
| 34 |
logger.info("Converting audio format")
|
| 35 |
audio = AudioSegment.from_file(audio_path)
|
| 36 |
processed_audio = audio.set_frame_rate(16000).set_channels(1)
|
| 37 |
+
wav_path = audio_path.replace(".mp3", ".wav") if audio_path.endswith(".mp3") else audio_path
|
| 38 |
+
if not wav_path.endswith(".wav"):
|
| 39 |
+
wav_path = f"{os.path.splitext(wav_path)[0]}.wav"
|
| 40 |
processed_audio.export(wav_path, format="wav")
|
| 41 |
logger.info(f"Audio converted to: {wav_path}")
|
| 42 |
+
return wav_path
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
class WhisperModel(ASRModel):
|
| 46 |
+
"""Whisper ASR model implementation"""
|
| 47 |
+
|
| 48 |
+
def __init__(self):
|
| 49 |
+
self.model = None
|
| 50 |
+
self.processor = None
|
| 51 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 52 |
+
|
| 53 |
+
def load_model(self):
|
| 54 |
+
"""Load Whisper model"""
|
| 55 |
+
logger.info("Loading Whisper model")
|
| 56 |
+
logger.info(f"Using device: {self.device}")
|
| 57 |
+
|
| 58 |
+
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 59 |
"openai/whisper-large-v3",
|
| 60 |
torch_dtype=torch.float32,
|
| 61 |
low_cpu_mem_usage=True,
|
| 62 |
use_safetensors=True
|
| 63 |
+
).to(self.device)
|
| 64 |
+
|
| 65 |
+
self.processor = AutoProcessor.from_pretrained("openai/whisper-large-v3")
|
| 66 |
+
logger.info("Whisper model loaded successfully")
|
| 67 |
+
|
| 68 |
+
def transcribe(self, audio_path):
|
| 69 |
+
"""Transcribe audio using Whisper"""
|
| 70 |
+
if self.model is None or self.processor is None:
|
| 71 |
+
self.load_model()
|
| 72 |
+
|
| 73 |
+
wav_path = self.preprocess_audio(audio_path)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
| 75 |
# Processing
|
| 76 |
logger.info("Processing audio input")
|
| 77 |
logger.debug("Loading audio data")
|
|
|
|
| 79 |
audio_data = audio_data.astype(np.float32)
|
| 80 |
|
| 81 |
# Increase chunk length and stride for longer transcriptions
|
| 82 |
+
inputs = self.processor(
|
| 83 |
audio_data,
|
| 84 |
sampling_rate=16000,
|
| 85 |
return_tensors="pt",
|
| 86 |
# Increase chunk length to handle longer segments
|
| 87 |
+
chunk_length_s=60,
|
| 88 |
+
stride_length_s=10
|
| 89 |
+
).to(self.device)
|
| 90 |
|
| 91 |
# Transcription
|
| 92 |
logger.info("Generating transcription")
|
| 93 |
with torch.no_grad():
|
| 94 |
# Add max_length parameter to allow for longer outputs
|
| 95 |
+
outputs = self.model.generate(
|
| 96 |
**inputs,
|
| 97 |
language="en",
|
| 98 |
task="transcribe",
|
|
|
|
| 100 |
no_repeat_ngram_size=3 # Prevent repetition in output
|
| 101 |
)
|
| 102 |
|
| 103 |
+
result = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 104 |
+
logger.info(f"Transcription completed successfully")
|
| 105 |
+
return result
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class ParakeetModel(ASRModel):
|
| 109 |
+
"""Parakeet ASR model implementation"""
|
| 110 |
+
|
| 111 |
+
def __init__(self):
|
| 112 |
+
self.model = None
|
| 113 |
+
|
| 114 |
+
def load_model(self):
|
| 115 |
+
"""Load Parakeet model"""
|
| 116 |
+
try:
|
| 117 |
+
import nemo.collections.asr as nemo_asr
|
| 118 |
+
logger.info("Loading Parakeet model")
|
| 119 |
+
self.model = nemo_asr.models.ASRModel.from_pretrained(model_name="nvidia/parakeet-tdt-0.6b-v2")
|
| 120 |
+
logger.info("Parakeet model loaded successfully")
|
| 121 |
+
except ImportError:
|
| 122 |
+
logger.error("Failed to import nemo_toolkit. Please install with: pip install -U 'nemo_toolkit[asr]'")
|
| 123 |
+
raise
|
| 124 |
+
|
| 125 |
+
def transcribe(self, audio_path):
|
| 126 |
+
"""Transcribe audio using Parakeet"""
|
| 127 |
+
if self.model is None:
|
| 128 |
+
self.load_model()
|
| 129 |
+
|
| 130 |
+
wav_path = self.preprocess_audio(audio_path)
|
| 131 |
+
|
| 132 |
+
# Transcription
|
| 133 |
+
logger.info("Generating transcription with Parakeet")
|
| 134 |
+
output = self.model.transcribe([wav_path])
|
| 135 |
+
result = output[0].text
|
| 136 |
logger.info(f"Transcription completed successfully")
|
| 137 |
return result
|
| 138 |
|
| 139 |
+
|
| 140 |
+
class ASRFactory:
|
| 141 |
+
"""Factory for creating ASR model instances"""
|
| 142 |
+
|
| 143 |
+
@staticmethod
|
| 144 |
+
def get_model(model_name="whisper"):
|
| 145 |
+
"""
|
| 146 |
+
Get ASR model by name
|
| 147 |
+
Args:
|
| 148 |
+
model_name: Name of the model to use (whisper or parakeet)
|
| 149 |
+
Returns:
|
| 150 |
+
ASR model instance
|
| 151 |
+
"""
|
| 152 |
+
if model_name.lower() == "whisper":
|
| 153 |
+
return WhisperModel()
|
| 154 |
+
elif model_name.lower() == "parakeet":
|
| 155 |
+
return ParakeetModel()
|
| 156 |
+
else:
|
| 157 |
+
logger.warning(f"Unknown model: {model_name}, falling back to Whisper")
|
| 158 |
+
return WhisperModel()
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def transcribe_audio(audio_path, model_name="whisper"):
|
| 162 |
+
"""
|
| 163 |
+
Convert audio file to text using specified ASR model
|
| 164 |
+
Args:
|
| 165 |
+
audio_path: Path to input audio file
|
| 166 |
+
model_name: Name of the ASR model to use (whisper or parakeet)
|
| 167 |
+
Returns:
|
| 168 |
+
Transcribed English text
|
| 169 |
+
"""
|
| 170 |
+
logger.info(f"Starting transcription for: {audio_path} using {model_name} model")
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
# Get the appropriate model
|
| 174 |
+
asr_model = ASRFactory.get_model(model_name)
|
| 175 |
+
|
| 176 |
+
# Transcribe audio
|
| 177 |
+
result = asr_model.transcribe(audio_path)
|
| 178 |
+
logger.info(f"transcription: %s" % result)
|
| 179 |
+
return result
|
| 180 |
+
|
| 181 |
except Exception as e:
|
| 182 |
logger.error(f"Transcription failed: {str(e)}", exc_info=True)
|
| 183 |
raise
|