Spaces:
Running
Running
Michael Hu
commited on
Commit
·
4b0381b
1
Parent(s):
875a169
add sample dia app file
Browse files- dia_app_gradio.py +378 -0
dia_app_gradio.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import time
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import soundfile as sf
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from dia.model import Dia
|
13 |
+
|
14 |
+
|
15 |
+
# Load Nari model and config
|
16 |
+
print("Loading Nari model...")
|
17 |
+
try:
|
18 |
+
# Use the function from inference.py
|
19 |
+
model = Dia.from_pretrained("nari-labs/Dia-1.6B", compute_dtype="float32")
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading Nari model: {e}")
|
22 |
+
raise
|
23 |
+
|
24 |
+
|
25 |
+
@spaces.GPU
|
26 |
+
def run_inference(
|
27 |
+
text_input: str,
|
28 |
+
audio_prompt_input: Optional[Tuple[int, np.ndarray]],
|
29 |
+
max_new_tokens: int,
|
30 |
+
cfg_scale: float,
|
31 |
+
temperature: float,
|
32 |
+
top_p: float,
|
33 |
+
cfg_filter_top_k: int,
|
34 |
+
speed_factor: float,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Runs Nari inference using the globally loaded model and provided inputs.
|
38 |
+
Uses temporary files for text and audio prompt compatibility with inference.generate.
|
39 |
+
"""
|
40 |
+
# global model, device # Access global model, config, device
|
41 |
+
|
42 |
+
if not text_input or text_input.isspace():
|
43 |
+
raise gr.Error("Text input cannot be empty.")
|
44 |
+
|
45 |
+
temp_txt_file_path = None
|
46 |
+
temp_audio_prompt_path = None
|
47 |
+
output_audio = (44100, np.zeros(1, dtype=np.float32))
|
48 |
+
|
49 |
+
try:
|
50 |
+
prompt_path_for_generate = None
|
51 |
+
if audio_prompt_input is not None:
|
52 |
+
sr, audio_data = audio_prompt_input
|
53 |
+
# Check if audio_data is valid
|
54 |
+
if (
|
55 |
+
audio_data is None or audio_data.size == 0 or audio_data.max() == 0
|
56 |
+
): # Check for silence/empty
|
57 |
+
gr.Warning("Audio prompt seems empty or silent, ignoring prompt.")
|
58 |
+
else:
|
59 |
+
# Save prompt audio to a temporary WAV file
|
60 |
+
with tempfile.NamedTemporaryFile(
|
61 |
+
mode="wb", suffix=".wav", delete=False
|
62 |
+
) as f_audio:
|
63 |
+
temp_audio_prompt_path = f_audio.name # Store path for cleanup
|
64 |
+
|
65 |
+
# Basic audio preprocessing for consistency
|
66 |
+
# Convert to float32 in [-1, 1] range if integer type
|
67 |
+
if np.issubdtype(audio_data.dtype, np.integer):
|
68 |
+
max_val = np.iinfo(audio_data.dtype).max
|
69 |
+
audio_data = audio_data.astype(np.float32) / max_val
|
70 |
+
elif not np.issubdtype(audio_data.dtype, np.floating):
|
71 |
+
gr.Warning(
|
72 |
+
f"Unsupported audio prompt dtype {audio_data.dtype}, attempting conversion."
|
73 |
+
)
|
74 |
+
# Attempt conversion, might fail for complex types
|
75 |
+
try:
|
76 |
+
audio_data = audio_data.astype(np.float32)
|
77 |
+
except Exception as conv_e:
|
78 |
+
raise gr.Error(
|
79 |
+
f"Failed to convert audio prompt to float32: {conv_e}"
|
80 |
+
)
|
81 |
+
|
82 |
+
# Ensure mono (average channels if stereo)
|
83 |
+
if audio_data.ndim > 1:
|
84 |
+
if audio_data.shape[0] == 2: # Assume (2, N)
|
85 |
+
audio_data = np.mean(audio_data, axis=0)
|
86 |
+
elif audio_data.shape[1] == 2: # Assume (N, 2)
|
87 |
+
audio_data = np.mean(audio_data, axis=1)
|
88 |
+
else:
|
89 |
+
gr.Warning(
|
90 |
+
f"Audio prompt has unexpected shape {audio_data.shape}, taking first channel/axis."
|
91 |
+
)
|
92 |
+
audio_data = (
|
93 |
+
audio_data[0]
|
94 |
+
if audio_data.shape[0] < audio_data.shape[1]
|
95 |
+
else audio_data[:, 0]
|
96 |
+
)
|
97 |
+
audio_data = np.ascontiguousarray(
|
98 |
+
audio_data
|
99 |
+
) # Ensure contiguous after slicing/mean
|
100 |
+
|
101 |
+
# Write using soundfile
|
102 |
+
try:
|
103 |
+
sf.write(
|
104 |
+
temp_audio_prompt_path, audio_data, sr, subtype="FLOAT"
|
105 |
+
) # Explicitly use FLOAT subtype
|
106 |
+
prompt_path_for_generate = temp_audio_prompt_path
|
107 |
+
print(
|
108 |
+
f"Created temporary audio prompt file: {temp_audio_prompt_path} (orig sr: {sr})"
|
109 |
+
)
|
110 |
+
except Exception as write_e:
|
111 |
+
print(f"Error writing temporary audio file: {write_e}")
|
112 |
+
raise gr.Error(f"Failed to save audio prompt: {write_e}")
|
113 |
+
|
114 |
+
# 3. Run Generation
|
115 |
+
|
116 |
+
start_time = time.time()
|
117 |
+
|
118 |
+
# Use torch.inference_mode() context manager for the generation call
|
119 |
+
with torch.inference_mode():
|
120 |
+
output_audio_np = model.generate(
|
121 |
+
text_input,
|
122 |
+
max_tokens=max_new_tokens,
|
123 |
+
cfg_scale=cfg_scale,
|
124 |
+
temperature=temperature,
|
125 |
+
top_p=top_p,
|
126 |
+
cfg_filter_top_k=cfg_filter_top_k, # Pass the value here
|
127 |
+
use_torch_compile=False, # Keep False for Gradio stability
|
128 |
+
audio_prompt=prompt_path_for_generate,
|
129 |
+
)
|
130 |
+
|
131 |
+
end_time = time.time()
|
132 |
+
print(f"Generation finished in {end_time - start_time:.2f} seconds.")
|
133 |
+
|
134 |
+
# 4. Convert Codes to Audio
|
135 |
+
if output_audio_np is not None:
|
136 |
+
# Get sample rate from the loaded DAC model
|
137 |
+
output_sr = 44100
|
138 |
+
|
139 |
+
# --- Slow down audio ---
|
140 |
+
original_len = len(output_audio_np)
|
141 |
+
# Ensure speed_factor is positive and not excessively small/large to avoid issues
|
142 |
+
speed_factor = max(0.1, min(speed_factor, 5.0))
|
143 |
+
target_len = int(
|
144 |
+
original_len / speed_factor
|
145 |
+
) # Target length based on speed_factor
|
146 |
+
if (
|
147 |
+
target_len != original_len and target_len > 0
|
148 |
+
): # Only interpolate if length changes and is valid
|
149 |
+
x_original = np.arange(original_len)
|
150 |
+
x_resampled = np.linspace(0, original_len - 1, target_len)
|
151 |
+
resampled_audio_np = np.interp(x_resampled, x_original, output_audio_np)
|
152 |
+
output_audio = (
|
153 |
+
output_sr,
|
154 |
+
resampled_audio_np.astype(np.float32),
|
155 |
+
) # Use resampled audio
|
156 |
+
print(
|
157 |
+
f"Resampled audio from {original_len} to {target_len} samples for {speed_factor:.2f}x speed."
|
158 |
+
)
|
159 |
+
else:
|
160 |
+
output_audio = (
|
161 |
+
output_sr,
|
162 |
+
output_audio_np,
|
163 |
+
) # Keep original if calculation fails or no change
|
164 |
+
print(f"Skipping audio speed adjustment (factor: {speed_factor:.2f}).")
|
165 |
+
# --- End slowdown ---
|
166 |
+
|
167 |
+
print(
|
168 |
+
f"Audio conversion successful. Final shape: {output_audio[1].shape}, Sample Rate: {output_sr}"
|
169 |
+
)
|
170 |
+
|
171 |
+
# Explicitly convert to int16 to prevent Gradio warning
|
172 |
+
if (
|
173 |
+
output_audio[1].dtype == np.float32
|
174 |
+
or output_audio[1].dtype == np.float64
|
175 |
+
):
|
176 |
+
audio_for_gradio = np.clip(output_audio[1], -1.0, 1.0)
|
177 |
+
audio_for_gradio = (audio_for_gradio * 32767).astype(np.int16)
|
178 |
+
output_audio = (output_sr, audio_for_gradio)
|
179 |
+
print("Converted audio to int16 for Gradio output.")
|
180 |
+
|
181 |
+
else:
|
182 |
+
print("\nGeneration finished, but no valid tokens were produced.")
|
183 |
+
# Return default silence
|
184 |
+
gr.Warning("Generation produced no output.")
|
185 |
+
|
186 |
+
except Exception as e:
|
187 |
+
print(f"Error during inference: {e}")
|
188 |
+
import traceback
|
189 |
+
|
190 |
+
traceback.print_exc()
|
191 |
+
# Re-raise as Gradio error to display nicely in the UI
|
192 |
+
raise gr.Error(f"Inference failed: {e}")
|
193 |
+
|
194 |
+
finally:
|
195 |
+
# 5. Cleanup Temporary Files defensively
|
196 |
+
if temp_txt_file_path and Path(temp_txt_file_path).exists():
|
197 |
+
try:
|
198 |
+
Path(temp_txt_file_path).unlink()
|
199 |
+
print(f"Deleted temporary text file: {temp_txt_file_path}")
|
200 |
+
except OSError as e:
|
201 |
+
print(
|
202 |
+
f"Warning: Error deleting temporary text file {temp_txt_file_path}: {e}"
|
203 |
+
)
|
204 |
+
if temp_audio_prompt_path and Path(temp_audio_prompt_path).exists():
|
205 |
+
try:
|
206 |
+
Path(temp_audio_prompt_path).unlink()
|
207 |
+
print(f"Deleted temporary audio prompt file: {temp_audio_prompt_path}")
|
208 |
+
except OSError as e:
|
209 |
+
print(
|
210 |
+
f"Warning: Error deleting temporary audio prompt file {temp_audio_prompt_path}: {e}"
|
211 |
+
)
|
212 |
+
|
213 |
+
return output_audio
|
214 |
+
|
215 |
+
|
216 |
+
# --- Create Gradio Interface ---
|
217 |
+
css = """
|
218 |
+
#col-container {max-width: 90%; margin-left: auto; margin-right: auto;}
|
219 |
+
"""
|
220 |
+
# Attempt to load default text from example.txt
|
221 |
+
default_text = "[S1] Dia is an open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] Wow. Amazing. (laughs) \n[S2] Try it now on Git hub or Hugging Face."
|
222 |
+
example_txt_path = Path("./example.txt")
|
223 |
+
if example_txt_path.exists():
|
224 |
+
try:
|
225 |
+
default_text = example_txt_path.read_text(encoding="utf-8").strip()
|
226 |
+
if not default_text: # Handle empty example file
|
227 |
+
default_text = "Example text file was empty."
|
228 |
+
except Exception as e:
|
229 |
+
print(f"Warning: Could not read example.txt: {e}")
|
230 |
+
|
231 |
+
|
232 |
+
# Build Gradio UI
|
233 |
+
with gr.Blocks(css=css) as demo:
|
234 |
+
gr.Markdown("# Nari Text-to-Speech Synthesis")
|
235 |
+
|
236 |
+
with gr.Row(equal_height=False):
|
237 |
+
with gr.Column(scale=1):
|
238 |
+
text_input = gr.Textbox(
|
239 |
+
label="Input Text",
|
240 |
+
placeholder="Enter text here...",
|
241 |
+
value=default_text,
|
242 |
+
lines=5, # Increased lines
|
243 |
+
)
|
244 |
+
audio_prompt_input = gr.Audio(
|
245 |
+
label="Audio Prompt (Optional)",
|
246 |
+
show_label=True,
|
247 |
+
sources=["upload", "microphone"],
|
248 |
+
type="numpy",
|
249 |
+
)
|
250 |
+
with gr.Accordion("Generation Parameters", open=False):
|
251 |
+
max_new_tokens = gr.Slider(
|
252 |
+
label="Max New Tokens (Audio Length)",
|
253 |
+
minimum=860,
|
254 |
+
maximum=3072,
|
255 |
+
value=model.config.data.audio_length, # Use config default if available, else fallback
|
256 |
+
step=50,
|
257 |
+
info="Controls the maximum length of the generated audio (more tokens = longer audio).",
|
258 |
+
)
|
259 |
+
cfg_scale = gr.Slider(
|
260 |
+
label="CFG Scale (Guidance Strength)",
|
261 |
+
minimum=1.0,
|
262 |
+
maximum=5.0,
|
263 |
+
value=3.0, # Default from inference.py
|
264 |
+
step=0.1,
|
265 |
+
info="Higher values increase adherence to the text prompt.",
|
266 |
+
)
|
267 |
+
temperature = gr.Slider(
|
268 |
+
label="Temperature (Randomness)",
|
269 |
+
minimum=1.0,
|
270 |
+
maximum=1.5,
|
271 |
+
value=1.3, # Default from inference.py
|
272 |
+
step=0.05,
|
273 |
+
info="Lower values make the output more deterministic, higher values increase randomness.",
|
274 |
+
)
|
275 |
+
top_p = gr.Slider(
|
276 |
+
label="Top P (Nucleus Sampling)",
|
277 |
+
minimum=0.80,
|
278 |
+
maximum=1.0,
|
279 |
+
value=0.95, # Default from inference.py
|
280 |
+
step=0.01,
|
281 |
+
info="Filters vocabulary to the most likely tokens cumulatively reaching probability P.",
|
282 |
+
)
|
283 |
+
cfg_filter_top_k = gr.Slider(
|
284 |
+
label="CFG Filter Top K",
|
285 |
+
minimum=15,
|
286 |
+
maximum=50,
|
287 |
+
value=30,
|
288 |
+
step=1,
|
289 |
+
info="Top k filter for CFG guidance.",
|
290 |
+
)
|
291 |
+
speed_factor_slider = gr.Slider(
|
292 |
+
label="Speed Factor",
|
293 |
+
minimum=0.8,
|
294 |
+
maximum=1.0,
|
295 |
+
value=0.94,
|
296 |
+
step=0.02,
|
297 |
+
info="Adjusts the speed of the generated audio (1.0 = original speed).",
|
298 |
+
)
|
299 |
+
|
300 |
+
run_button = gr.Button("Generate Audio", variant="primary")
|
301 |
+
|
302 |
+
with gr.Column(scale=1):
|
303 |
+
audio_output = gr.Audio(
|
304 |
+
label="Generated Audio",
|
305 |
+
type="numpy",
|
306 |
+
autoplay=False,
|
307 |
+
)
|
308 |
+
|
309 |
+
# Link button click to function
|
310 |
+
run_button.click(
|
311 |
+
fn=run_inference,
|
312 |
+
inputs=[
|
313 |
+
text_input,
|
314 |
+
audio_prompt_input,
|
315 |
+
max_new_tokens,
|
316 |
+
cfg_scale,
|
317 |
+
temperature,
|
318 |
+
top_p,
|
319 |
+
cfg_filter_top_k,
|
320 |
+
speed_factor_slider,
|
321 |
+
],
|
322 |
+
outputs=[audio_output], # Add status_output here if using it
|
323 |
+
api_name="generate_audio",
|
324 |
+
)
|
325 |
+
|
326 |
+
# Add examples (ensure the prompt path is correct or remove it if example file doesn't exist)
|
327 |
+
example_prompt_path = "./example_prompt.mp3" # Adjust if needed
|
328 |
+
examples_list = [
|
329 |
+
[
|
330 |
+
"[S1] Oh fire! Oh my goodness! What's the procedure? What to we do people? The smoke could be coming through an air duct! \n[S2] Oh my god! Okay.. it's happening. Everybody stay calm! \n[S1] What's the procedure... \n[S2] Everybody stay fucking calm!!!... Everybody fucking calm down!!!!! \n[S1] No! No! If you touch the handle, if its hot there might be a fire down the hallway! ",
|
331 |
+
None,
|
332 |
+
3072,
|
333 |
+
3.0,
|
334 |
+
1.3,
|
335 |
+
0.95,
|
336 |
+
35,
|
337 |
+
0.94,
|
338 |
+
],
|
339 |
+
[
|
340 |
+
"[S1] Open weights text to dialogue model. \n[S2] You get full control over scripts and voices. \n[S1] I'm biased, but I think we clearly won. \n[S2] Hard to disagree. (laughs) \n[S1] Thanks for listening to this demo. \n[S2] Try it now on Git hub and Hugging Face. \n[S1] If you liked our model, please give us a star and share to your friends. \n[S2] This was Nari Labs.",
|
341 |
+
example_prompt_path if Path(example_prompt_path).exists() else None,
|
342 |
+
3072,
|
343 |
+
3.0,
|
344 |
+
1.3,
|
345 |
+
0.95,
|
346 |
+
35,
|
347 |
+
0.94,
|
348 |
+
],
|
349 |
+
]
|
350 |
+
|
351 |
+
if examples_list:
|
352 |
+
gr.Examples(
|
353 |
+
examples=examples_list,
|
354 |
+
inputs=[
|
355 |
+
text_input,
|
356 |
+
audio_prompt_input,
|
357 |
+
max_new_tokens,
|
358 |
+
cfg_scale,
|
359 |
+
temperature,
|
360 |
+
top_p,
|
361 |
+
cfg_filter_top_k,
|
362 |
+
speed_factor_slider,
|
363 |
+
],
|
364 |
+
outputs=[audio_output],
|
365 |
+
fn=run_inference,
|
366 |
+
cache_examples=False,
|
367 |
+
label="Examples (Click to Run)",
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
gr.Markdown("_(No examples configured or example prompt file missing)_")
|
371 |
+
|
372 |
+
# --- Launch the App ---
|
373 |
+
if __name__ == "__main__":
|
374 |
+
print("Launching Gradio interface...")
|
375 |
+
|
376 |
+
# set `GRADIO_SERVER_NAME`, `GRADIO_SERVER_PORT` env vars to override default values
|
377 |
+
# use `GRADIO_SERVER_NAME=0.0.0.0` for Docker
|
378 |
+
demo.launch()
|