Spaces:
Running
Running
Michael Hu
commited on
Commit
·
7b25fdd
1
Parent(s):
030c851
use dia tts as fallback model if kokoro is not available
Browse files- utils/tts.py +140 -45
utils/tts.py
CHANGED
@@ -5,42 +5,72 @@ import soundfile as sf
|
|
5 |
|
6 |
logger = logging.getLogger(__name__)
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
from kokoro import KPipeline
|
11 |
KOKORO_AVAILABLE = True
|
|
|
12 |
except AttributeError as e:
|
13 |
# Specifically catch the EspeakWrapper.set_data_path error
|
14 |
if "EspeakWrapper" in str(e) and "set_data_path" in str(e):
|
15 |
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue")
|
16 |
-
KOKORO_AVAILABLE = False
|
17 |
else:
|
18 |
# Re-raise if it's a different error
|
|
|
19 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
class TTSEngine:
|
22 |
def __init__(self, lang_code='z'):
|
23 |
-
"""Initialize TTS Engine with Kokoro
|
24 |
|
25 |
Args:
|
26 |
lang_code (str): Language code ('a' for US English, 'b' for British English,
|
27 |
'j' for Japanese, 'z' for Mandarin Chinese)
|
|
|
28 |
"""
|
29 |
logger.info("Initializing TTS Engine")
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
else:
|
34 |
self.pipeline = KPipeline(lang_code=lang_code)
|
|
|
35 |
logger.info("TTS engine initialized with Kokoro")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
|
38 |
-
"""Generate speech from text using
|
39 |
|
40 |
Args:
|
41 |
text (str): Input text to synthesize
|
42 |
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
|
|
43 |
speed (float): Speech speed multiplier (0.5 to 2.0)
|
|
|
44 |
|
45 |
Returns:
|
46 |
str: Path to the generated audio file
|
@@ -54,26 +84,29 @@ class TTSEngine:
|
|
54 |
# Generate unique output path
|
55 |
output_path = f"temp/outputs/output_{int(time.time())}.wav"
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
|
78 |
logger.info(f"Audio generation complete: {output_path}")
|
79 |
return output_path
|
@@ -81,6 +114,26 @@ class TTSEngine:
|
|
81 |
except Exception as e:
|
82 |
logger.error(f"TTS generation failed: {str(e)}", exc_info=True)
|
83 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0):
|
86 |
"""Generate speech from text and yield each segment
|
@@ -94,27 +147,69 @@ class TTSEngine:
|
|
94 |
tuple: (sample_rate, audio_data) pairs for each segment
|
95 |
"""
|
96 |
try:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
except Exception as e:
|
116 |
logger.error(f"TTS streaming failed: {str(e)}", exc_info=True)
|
117 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
# Initialize TTS engine with cache decorator if using Streamlit
|
120 |
def get_tts_engine(lang_code='a'):
|
|
|
5 |
|
6 |
logger = logging.getLogger(__name__)
|
7 |
|
8 |
+
# Flag to track TTS engine availability
|
9 |
+
KOKORO_AVAILABLE = False
|
10 |
+
DIA_AVAILABLE = False
|
11 |
+
|
12 |
+
# Try to import Kokoro first
|
13 |
try:
|
14 |
from kokoro import KPipeline
|
15 |
KOKORO_AVAILABLE = True
|
16 |
+
logger.info("Kokoro TTS engine is available")
|
17 |
except AttributeError as e:
|
18 |
# Specifically catch the EspeakWrapper.set_data_path error
|
19 |
if "EspeakWrapper" in str(e) and "set_data_path" in str(e):
|
20 |
logger.warning("Kokoro import failed due to EspeakWrapper.set_data_path issue")
|
|
|
21 |
else:
|
22 |
# Re-raise if it's a different error
|
23 |
+
logger.error(f"Kokoro import failed with unexpected error: {str(e)}")
|
24 |
raise
|
25 |
+
except ImportError:
|
26 |
+
logger.warning("Kokoro TTS engine is not available")
|
27 |
+
|
28 |
+
# Try to import Dia as fallback
|
29 |
+
if not KOKORO_AVAILABLE:
|
30 |
+
try:
|
31 |
+
from utils.tts_dia import _get_model as get_dia_model
|
32 |
+
DIA_AVAILABLE = True
|
33 |
+
logger.info("Dia TTS engine is available as fallback")
|
34 |
+
except ImportError as e:
|
35 |
+
logger.warning(f"Dia TTS engine is not available: {str(e)}")
|
36 |
+
logger.warning("Will use dummy TTS implementation as fallback")
|
37 |
|
38 |
class TTSEngine:
|
39 |
def __init__(self, lang_code='z'):
|
40 |
+
"""Initialize TTS Engine with Kokoro or Dia as fallback
|
41 |
|
42 |
Args:
|
43 |
lang_code (str): Language code ('a' for US English, 'b' for British English,
|
44 |
'j' for Japanese, 'z' for Mandarin Chinese)
|
45 |
+
Note: lang_code is only used for Kokoro, not for Dia
|
46 |
"""
|
47 |
logger.info("Initializing TTS Engine")
|
48 |
+
self.engine_type = None
|
49 |
+
|
50 |
+
if KOKORO_AVAILABLE:
|
|
|
51 |
self.pipeline = KPipeline(lang_code=lang_code)
|
52 |
+
self.engine_type = "kokoro"
|
53 |
logger.info("TTS engine initialized with Kokoro")
|
54 |
+
elif DIA_AVAILABLE:
|
55 |
+
# For Dia, we don't need to initialize anything here
|
56 |
+
# The model will be lazy-loaded when needed
|
57 |
+
self.pipeline = None
|
58 |
+
self.engine_type = "dia"
|
59 |
+
logger.info("TTS engine initialized with Dia (lazy loading)")
|
60 |
+
else:
|
61 |
+
logger.warning("Using dummy TTS implementation as no TTS engines are available")
|
62 |
+
self.pipeline = None
|
63 |
+
self.engine_type = "dummy"
|
64 |
|
65 |
def generate_speech(self, text: str, voice: str = 'af_heart', speed: float = 1.0) -> str:
|
66 |
+
"""Generate speech from text using available TTS engine
|
67 |
|
68 |
Args:
|
69 |
text (str): Input text to synthesize
|
70 |
voice (str): Voice ID to use (e.g., 'af_heart', 'af_bella', etc.)
|
71 |
+
Note: voice parameter is only used for Kokoro, not for Dia
|
72 |
speed (float): Speech speed multiplier (0.5 to 2.0)
|
73 |
+
Note: speed parameter is only used for Kokoro, not for Dia
|
74 |
|
75 |
Returns:
|
76 |
str: Path to the generated audio file
|
|
|
84 |
# Generate unique output path
|
85 |
output_path = f"temp/outputs/output_{int(time.time())}.wav"
|
86 |
|
87 |
+
# Use the appropriate TTS engine based on availability
|
88 |
+
if self.engine_type == "kokoro":
|
89 |
+
# Use Kokoro for TTS generation
|
90 |
+
generator = self.pipeline(text, voice=voice, speed=speed)
|
91 |
+
for _, _, audio in generator:
|
92 |
+
logger.info(f"Saving Kokoro audio to {output_path}")
|
93 |
+
sf.write(output_path, audio, 24000)
|
94 |
+
break
|
95 |
+
elif self.engine_type == "dia":
|
96 |
+
# Use Dia for TTS generation
|
97 |
+
try:
|
98 |
+
# Import here to avoid circular imports
|
99 |
+
from utils.tts_dia import generate_speech as dia_generate_speech
|
100 |
+
# Call Dia's generate_speech function
|
101 |
+
output_path = dia_generate_speech(text)
|
102 |
+
logger.info(f"Generated audio with Dia: {output_path}")
|
103 |
+
except Exception as dia_error:
|
104 |
+
logger.error(f"Dia TTS generation failed: {str(dia_error)}", exc_info=True)
|
105 |
+
# Fall back to dummy audio if Dia fails
|
106 |
+
return self._generate_dummy_audio(output_path)
|
107 |
+
else:
|
108 |
+
# Generate dummy audio as fallback
|
109 |
+
return self._generate_dummy_audio(output_path)
|
110 |
|
111 |
logger.info(f"Audio generation complete: {output_path}")
|
112 |
return output_path
|
|
|
114 |
except Exception as e:
|
115 |
logger.error(f"TTS generation failed: {str(e)}", exc_info=True)
|
116 |
raise
|
117 |
+
|
118 |
+
def _generate_dummy_audio(self, output_path):
|
119 |
+
"""Generate a dummy audio file with a simple sine wave
|
120 |
+
|
121 |
+
Args:
|
122 |
+
output_path (str): Path to save the dummy audio file
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
str: Path to the generated dummy audio file
|
126 |
+
"""
|
127 |
+
import numpy as np
|
128 |
+
sample_rate = 24000
|
129 |
+
duration = 3.0 # seconds
|
130 |
+
t = np.linspace(0, duration, int(sample_rate * duration), False)
|
131 |
+
tone = np.sin(2 * np.pi * 440 * t) * 0.3
|
132 |
+
|
133 |
+
logger.info(f"Saving dummy audio to {output_path}")
|
134 |
+
sf.write(output_path, tone, sample_rate)
|
135 |
+
logger.info(f"Dummy audio generation complete: {output_path}")
|
136 |
+
return output_path
|
137 |
|
138 |
def generate_speech_stream(self, text: str, voice: str = 'af_heart', speed: float = 1.0):
|
139 |
"""Generate speech from text and yield each segment
|
|
|
147 |
tuple: (sample_rate, audio_data) pairs for each segment
|
148 |
"""
|
149 |
try:
|
150 |
+
# Use the appropriate TTS engine based on availability
|
151 |
+
if self.engine_type == "kokoro":
|
152 |
+
# Use Kokoro for streaming TTS
|
153 |
+
generator = self.pipeline(text, voice=voice, speed=speed)
|
154 |
+
for _, _, audio in generator:
|
155 |
+
yield 24000, audio
|
156 |
+
elif self.engine_type == "dia":
|
157 |
+
# Dia doesn't support streaming natively, so we generate the full audio
|
158 |
+
# and then yield it as a single chunk
|
159 |
+
try:
|
160 |
+
# Import here to avoid circular imports
|
161 |
+
import torch
|
162 |
+
from utils.tts_dia import _get_model, DEFAULT_SAMPLE_RATE
|
163 |
+
|
164 |
+
# Get the Dia model
|
165 |
+
model = _get_model()
|
166 |
+
|
167 |
+
# Generate audio
|
168 |
+
with torch.inference_mode():
|
169 |
+
output_audio_np = model.generate(
|
170 |
+
text,
|
171 |
+
max_tokens=None,
|
172 |
+
cfg_scale=3.0,
|
173 |
+
temperature=1.3,
|
174 |
+
top_p=0.95,
|
175 |
+
cfg_filter_top_k=35,
|
176 |
+
use_torch_compile=False,
|
177 |
+
verbose=False
|
178 |
+
)
|
179 |
+
|
180 |
+
if output_audio_np is not None:
|
181 |
+
yield DEFAULT_SAMPLE_RATE, output_audio_np
|
182 |
+
else:
|
183 |
+
# Fall back to dummy audio if Dia fails
|
184 |
+
yield from self._generate_dummy_audio_stream()
|
185 |
+
except Exception as dia_error:
|
186 |
+
logger.error(f"Dia TTS streaming failed: {str(dia_error)}", exc_info=True)
|
187 |
+
# Fall back to dummy audio if Dia fails
|
188 |
+
yield from self._generate_dummy_audio_stream()
|
189 |
+
else:
|
190 |
+
# Generate dummy audio chunks as fallback
|
191 |
+
yield from self._generate_dummy_audio_stream()
|
192 |
|
193 |
except Exception as e:
|
194 |
logger.error(f"TTS streaming failed: {str(e)}", exc_info=True)
|
195 |
raise
|
196 |
+
|
197 |
+
def _generate_dummy_audio_stream(self):
|
198 |
+
"""Generate dummy audio chunks with simple sine waves
|
199 |
+
|
200 |
+
Yields:
|
201 |
+
tuple: (sample_rate, audio_data) pairs for each dummy segment
|
202 |
+
"""
|
203 |
+
import numpy as np
|
204 |
+
sample_rate = 24000
|
205 |
+
duration = 1.0 # seconds per chunk
|
206 |
+
|
207 |
+
# Create 3 chunks of dummy audio
|
208 |
+
for i in range(3):
|
209 |
+
t = np.linspace(0, duration, int(sample_rate * duration), False)
|
210 |
+
freq = 440 + (i * 220) # Different frequency for each chunk
|
211 |
+
tone = np.sin(2 * np.pi * freq * t) * 0.3
|
212 |
+
yield sample_rate, tone
|
213 |
|
214 |
# Initialize TTS engine with cache decorator if using Streamlit
|
215 |
def get_tts_engine(lang_code='a'):
|