import logging import os import time import numpy as np import soundfile as sf from typing import Optional, Generator, Tuple, List from .tts_base import TTSBase # Configure logging logger = logging.getLogger(__name__) class DummyTTS(TTSBase): """Dummy TTS engine that generates sine wave audio This class is used as a fallback when no other TTS engine is available. """ def generate_speech(self, text: str, voice: str = 'default', speed: float = 1.0) -> str: """Generate a dummy sine wave audio file Args: text (str): Input text (not used) voice (str): Voice ID (not used) speed (float): Speech speed multiplier (not used) Returns: str: Path to the generated audio file """ logger.info(f"Generating dummy speech for text length: {len(text)}") # Generate a simple sine wave sample_rate = 24000 duration = min(len(text) / 20, 10) # Rough approximation of speech duration t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) audio = 0.5 * np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave # Save to file output_path = self._generate_output_path(prefix="dummy") sf.write(output_path, audio, sample_rate) logger.info(f"Generated dummy audio: {output_path}") return output_path def generate_speech_stream(self, text: str, voice: str = 'default', speed: float = 1.0) -> Generator[Tuple[int, np.ndarray], None, None]: """Generate a dummy sine wave audio stream Args: text (str): Input text (not used) voice (str): Voice ID (not used) speed (float): Speech speed multiplier (not used) Yields: tuple: (sample_rate, audio_data) pairs """ logger.info(f"Generating dummy speech stream for text length: {len(text)}") # Generate a simple sine wave sample_rate = 24000 duration = min(len(text) / 20, 10) # Rough approximation of speech duration t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) audio = 0.5 * np.sin(2 * np.pi * 440 * t) # 440 Hz sine wave # Yield the audio data yield sample_rate, audio