File size: 46,943 Bytes
cc54e11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
# coding: utf-8
# Copyright (c) 2025 inclusionAI.
import abc
import json
import time
import traceback
import uuid
from collections import OrderedDict
from typing import AsyncGenerator, Dict, Any, List, Union, Callable

import aworld.trace as trace
from aworld.config import ToolConfig
from aworld.config.conf import AgentConfig, ConfigDict, ContextRuleConfig, ModelConfig, OptimizationConfig, \
    LlmCompressionConfig
from aworld.core.agent.agent_desc import get_agent_desc
from aworld.core.agent.base import BaseAgent, AgentResult, is_agent_by_name, is_agent
from aworld.core.common import Observation, ActionModel
from aworld.core.context.base import AgentContext
from aworld.core.context.base import Context
from aworld.core.context.processor.prompt_processor import PromptProcessor
from aworld.core.event import eventbus
from aworld.core.event.base import Message, ToolMessage, Constants, AgentMessage
from aworld.core.tool.base import ToolFactory, AsyncTool, Tool
from aworld.core.memory import MemoryItem, MemoryConfig
from aworld.core.tool.tool_desc import get_tool_desc
from aworld.logs.util import logger, color_log, Color, trace_logger
from aworld.mcp_client.utils import sandbox_mcp_tool_desc_transform
from aworld.memory.main import MemoryFactory
from aworld.models.llm import get_llm_model, call_llm_model, acall_llm_model, acall_llm_model_stream
from aworld.models.model_response import ModelResponse, ToolCall
from aworld.models.utils import tool_desc_transform, agent_desc_transform
from aworld.output import Outputs
from aworld.output.base import StepOutput, MessageOutput
from aworld.runners.hook.hook_factory import HookFactory
from aworld.runners.hook.hooks import HookPoint
from aworld.utils.common import sync_exec, nest_dict_counter


class Agent(BaseAgent[Observation, List[ActionModel]]):
    """Basic agent for unified protocol within the framework."""

    def __init__(self,
                 conf: Union[Dict[str, Any], ConfigDict, AgentConfig],
                 resp_parse_func: Callable[..., Any] = None,
                 **kwargs):
        """A api class implementation of agent, using the `Observation` and `List[ActionModel]` protocols.

        Args:
            conf: Agent config, supported AgentConfig, ConfigDict or dict.
            resp_parse_func: Response parse function for the agent standard output, transform llm response.
        """
        super(Agent, self).__init__(conf, **kwargs)
        conf = self.conf
        self.model_name = conf.llm_config.llm_model_name if conf.llm_config.llm_model_name else conf.llm_model_name
        self._llm = None
        self.memory = MemoryFactory.from_config(MemoryConfig(provider="inmemory"))
        self.system_prompt: str = kwargs.pop("system_prompt") if kwargs.get("system_prompt") else conf.system_prompt
        self.agent_prompt: str = kwargs.get("agent_prompt") if kwargs.get("agent_prompt") else conf.agent_prompt

        self.event_driven = kwargs.pop('event_driven', conf.get('event_driven', False))
        self.handler: Callable[..., Any] = kwargs.get('handler')

        self.need_reset = kwargs.get('need_reset') if kwargs.get('need_reset') else conf.need_reset
        # whether to keep contextual information, False means keep, True means reset in every step by the agent call
        self.step_reset = kwargs.get('step_reset') if kwargs.get('step_reset') else True
        # tool_name: [tool_action1, tool_action2, ...]
        self.black_tool_actions: Dict[str, List[str]] = kwargs.get("black_tool_actions") if kwargs.get(
            "black_tool_actions") else conf.get('black_tool_actions', {})
        self.resp_parse_func = resp_parse_func if resp_parse_func else self.response_parse
        self.history_messages = kwargs.get("history_messages") if kwargs.get("history_messages") else 100
        self.use_tools_in_prompt = kwargs.get('use_tools_in_prompt', conf.use_tools_in_prompt)
        self.context_rule = kwargs.get("context_rule") if kwargs.get("context_rule") else conf.context_rule
        self.tools_instances = {}
        self.tools_conf = {}

    def reset(self, options: Dict[str, Any]):
        super().reset(options)
        self.memory = MemoryFactory.from_config(
            MemoryConfig(provider=options.pop("memory_store") if options.get("memory_store") else "inmemory"))

    def set_tools_instances(self, tools, tools_conf):
        self.tools_instances = tools
        self.tools_conf = tools_conf

    @property
    def llm(self):
        # lazy
        if self._llm is None:
            llm_config = self.conf.llm_config or None
            conf = llm_config if llm_config and (
                    llm_config.llm_provider or llm_config.llm_base_url or llm_config.llm_api_key or llm_config.llm_model_name) else self.conf
            self._llm = get_llm_model(conf)
        return self._llm

    def _env_tool(self):
        """Description of agent as tool."""
        return tool_desc_transform(get_tool_desc(),
                                   tools=self.tool_names if self.tool_names else [],
                                   black_tool_actions=self.black_tool_actions)

    def _handoffs_agent_as_tool(self):
        """Description of agent as tool."""
        return agent_desc_transform(get_agent_desc(),
                                    agents=self.handoffs if self.handoffs else [])

    def _mcp_is_tool(self):
        """Description of mcp servers are tools."""
        try:
            return sync_exec(sandbox_mcp_tool_desc_transform, self.mcp_servers, self.mcp_config)
        except Exception as e:
            logger.error(f"mcp_is_tool error: {traceback.format_exc()}")
            return []

    def desc_transform(self):
        """Transform of descriptions of supported tools, agents, and MCP servers in the framework to support function calls of LLM."""

        # Stateless tool
        self.tools = self._env_tool()
        # Agents as tool
        self.tools.extend(self._handoffs_agent_as_tool())
        # MCP servers are tools
        self.tools.extend(self._mcp_is_tool())
        # load to context
        self.agent_context.set_tools(self.tools)
        return self.tools

    async def async_desc_transform(self):
        """Transform of descriptions of supported tools, agents, and MCP servers in the framework to support function calls of LLM."""

        # Stateless tool
        self.tools = self._env_tool()
        # Agents as tool
        self.tools.extend(self._handoffs_agent_as_tool())
        # MCP servers are tools
        # todo sandbox
        if self.sandbox:
            sand_box = self.sandbox
            mcp_tools = await sand_box.mcpservers.list_tools()
            self.tools.extend(mcp_tools)
        else:
            self.tools.extend(await sandbox_mcp_tool_desc_transform(self.mcp_servers, self.mcp_config))
        # load to agent context
        self.agent_context.set_tools(self.tools)

    def _messages_transform(
            self,
            observation: Observation,
    ):
        agent_prompt = self.agent_context.agent_prompt
        sys_prompt = self.agent_context.sys_prompt
        messages = []
        if sys_prompt:
            messages.append(
                {'role': 'system', 'content': sys_prompt if not self.use_tools_in_prompt else sys_prompt.format(
                    tool_list=self.tools)})

        content = observation.content
        if agent_prompt and '{task}' in agent_prompt:
            content = agent_prompt.format(task=observation.content)

        cur_msg = {'role': 'user', 'content': content}
        # query from memory,
        # histories = self.memory.get_last_n(self.history_messages, filter={"session_id": self.context.session_id})
        histories = self.memory.get_last_n(self.history_messages)
        messages.extend(histories)

        action_results = observation.action_result
        if action_results:
            for action_result in action_results:
                cur_msg['role'] = 'tool'
                cur_msg['tool_call_id'] = action_result.tool_id

        agent_info = self.context.context_info.get(self.id())
        if (self.use_tools_in_prompt and "is_use_tool_prompt" in agent_info and "tool_calls"
                in agent_info and agent_prompt):
            cur_msg['content'] = agent_prompt.format(action_list=agent_info["tool_calls"],
                                                     result=content)

        if observation.images:
            urls = [{'type': 'text', 'text': content}]
            for image_url in observation.images:
                urls.append({'type': 'image_url', 'image_url': {"url": image_url}})

            cur_msg['content'] = urls
        messages.append(cur_msg)

        # truncate and other process
        try:
            messages = self._process_messages(messages=messages, agent_context=self.agent_context, context=self.context)
        except Exception as e:
            logger.warning(f"Failed to process messages in _messages_transform: {e}")
            logger.debug(f"Process messages error details: {traceback.format_exc()}")
        self.agent_context.update_messages(messages)
        return messages

    def messages_transform(self,
                           content: str,
                           image_urls: List[str] = None,
                           **kwargs):
        """Transform the original content to LLM messages of native format.

        Args:
            content: User content.
            image_urls: List of images encoded using base64.
            sys_prompt: Agent system prompt.
            max_step: The maximum list length obtained from memory.
        Returns:
            Message list for LLM.
        """
        sys_prompt = self.agent_context.system_prompt
        agent_prompt = self.agent_context.agent_prompt
        messages = []
        if sys_prompt:
            messages.append(
                {'role': 'system', 'content': sys_prompt if not self.use_tools_in_prompt else sys_prompt.format(
                    tool_list=self.tools)})

        histories = self.memory.get_last_n(self.history_messages)
        user_content = content
        if not histories and agent_prompt and '{task}' in agent_prompt:
            user_content = agent_prompt.format(task=content)

        cur_msg = {'role': 'user', 'content': user_content}
        # query from memory,
        # histories = self.memory.get_last_n(self.history_messages, filter={"session_id": self.context.session_id})

        if histories:
            # default use the first tool call
            for history in histories:
                if not self.use_tools_in_prompt and "tool_calls" in history.metadata and history.metadata['tool_calls']:
                    messages.append({'role': history.metadata['role'], 'content': history.content,
                                     'tool_calls': [history.metadata["tool_calls"][0]]})
                else:
                    messages.append({'role': history.metadata['role'], 'content': history.content,
                                     "tool_call_id": history.metadata.get("tool_call_id")})

            if not self.use_tools_in_prompt and "tool_calls" in histories[-1].metadata and histories[-1].metadata[
                'tool_calls']:
                tool_id = histories[-1].metadata["tool_calls"][0].id
                if tool_id:
                    cur_msg['role'] = 'tool'
                    cur_msg['tool_call_id'] = tool_id
            if self.use_tools_in_prompt and "is_use_tool_prompt" in histories[-1].metadata and "tool_calls" in \
                    histories[-1].metadata and agent_prompt:
                cur_msg['content'] = agent_prompt.format(action_list=histories[-1].metadata["tool_calls"],
                                                         result=content)

        if image_urls:
            urls = [{'type': 'text', 'text': content}]
            for image_url in image_urls:
                urls.append({'type': 'image_url', 'image_url': {"url": image_url}})

            cur_msg['content'] = urls
        messages.append(cur_msg)

        # truncate and other process
        try:
            messages = self._process_messages(messages=messages, agent_context=self.agent_context, context=self.context)
        except Exception as e:
            logger.warning(f"Failed to process messages in messages_transform: {e}")
            logger.debug(f"Process messages error details: {traceback.format_exc()}")
        self.agent_context.set_messages(messages)
        return messages

    def use_tool_list(self, resp: ModelResponse) -> List[Dict[str, Any]]:
        tool_list = []
        try:
            if resp and hasattr(resp, 'content') and resp.content:
                content = resp.content.strip()
            else:
                return tool_list
            content = content.replace('\n', '').replace('\r', '')
            response_json = json.loads(content)
            if "use_tool_list" in response_json:
                use_tool_list = response_json["use_tool_list"]
                if use_tool_list:
                    for use_tool in use_tool_list:
                        tool_name = use_tool["tool"]
                        arguments = use_tool["arguments"]
                        if tool_name and arguments:
                            tool_list.append(use_tool)

            return tool_list
        except Exception as e:
            logger.debug(f"tool_parse error, content: {resp.content}, \nerror msg: {traceback.format_exc()}")
            return tool_list

    def response_parse(self, resp: ModelResponse) -> AgentResult:
        """Default parse response by LLM."""
        results = []
        if not resp:
            logger.warning("LLM no valid response!")
            return AgentResult(actions=[], current_state=None)

        use_tool_list = self.use_tool_list(resp)
        is_call_tool = False
        content = '' if resp.content is None else resp.content
        if resp.tool_calls:
            is_call_tool = True
            for tool_call in resp.tool_calls:
                full_name: str = tool_call.function.name
                if not full_name:
                    logger.warning("tool call response no tool name.")
                    continue
                try:
                    params = json.loads(tool_call.function.arguments)
                except:
                    logger.warning(f"{tool_call.function.arguments} parse to json fail.")
                    params = {}
                # format in framework
                names = full_name.split("__")
                tool_name = names[0]
                if is_agent_by_name(tool_name):
                    param_info = params.get('content', "") + ' ' + params.get('info', '')
                    results.append(ActionModel(tool_name=tool_name,
                                               tool_id=tool_call.id,
                                               agent_name=self.id(),
                                               params=params,
                                               policy_info=content + param_info))
                else:
                    action_name = '__'.join(names[1:]) if len(names) > 1 else ''
                    results.append(ActionModel(tool_name=tool_name,
                                               tool_id=tool_call.id,
                                               action_name=action_name,
                                               agent_name=self.id(),
                                               params=params,
                                               policy_info=content))
        elif use_tool_list and len(use_tool_list) > 0:
            is_call_tool = True
            for use_tool in use_tool_list:
                full_name = use_tool["tool"]
                if not full_name:
                    logger.warning("tool call response no tool name.")
                    continue
                params = use_tool["arguments"]
                if not params:
                    logger.warning("tool call response no tool params.")
                    continue
                names = full_name.split("__")
                tool_name = names[0]
                if is_agent_by_name(tool_name):
                    param_info = params.get('content', "") + ' ' + params.get('info', '')
                    results.append(ActionModel(tool_name=tool_name,
                                               tool_id=use_tool.get('id'),
                                               agent_name=self.id(),
                                               params=params,
                                               policy_info=content + param_info))
                else:
                    action_name = '__'.join(names[1:]) if len(names) > 1 else ''
                    results.append(ActionModel(tool_name=tool_name,
                                               tool_id=use_tool.get('id'),
                                               action_name=action_name,
                                               agent_name=self.id(),
                                               params=params,
                                               policy_info=content))
        else:
            if content:
                content = content.replace("```json", "").replace("```", "")
            # no tool call, agent name is itself.
            results.append(ActionModel(agent_name=self.id(), policy_info=content))
        return AgentResult(actions=results, current_state=None, is_call_tool=is_call_tool)

    def _log_messages(self, messages: List[Dict[str, Any]]) -> None:
        """Log the sequence of messages for debugging purposes"""
        logger.info(f"[agent] Invoking LLM with {len(messages)} messages:")
        for i, msg in enumerate(messages):
            prefix = msg.get('role')
            logger.info(f"[agent] Message {i + 1}: {prefix} ===================================")
            if isinstance(msg['content'], list):
                for item in msg['content']:
                    if item.get('type') == 'text':
                        logger.info(f"[agent] Text content: {item.get('text')}")
                    elif item.get('type') == 'image_url':
                        image_url = item.get('image_url', {}).get('url', '')
                        if image_url.startswith('data:image'):
                            logger.info(f"[agent] Image: [Base64 image data]")
                        else:
                            logger.info(f"[agent] Image URL: {image_url[:30]}...")
            else:
                content = str(msg['content'])
                chunk_size = 500
                for j in range(0, len(content), chunk_size):
                    chunk = content[j:j + chunk_size]
                    if j == 0:
                        logger.info(f"[agent] Content: {chunk}")
                    else:
                        logger.info(f"[agent] Content (continued): {chunk}")

            if 'tool_calls' in msg and msg['tool_calls']:
                for tool_call in msg.get('tool_calls'):
                    if isinstance(tool_call, dict):
                        logger.info(f"[agent] Tool call: {tool_call.get('name')} - ID: {tool_call.get('id')}")
                        args = str(tool_call.get('args', {}))[:1000]
                        logger.info(f"[agent] Tool args: {args}...")
                    elif isinstance(tool_call, ToolCall):
                        logger.info(f"[agent] Tool call: {tool_call.function.name} - ID: {tool_call.id}")
                        args = str(tool_call.function.arguments)[:1000]
                        logger.info(f"[agent] Tool args: {args}...")

    def _agent_result(self, actions: List[ActionModel], caller: str):
        if not actions:
            raise Exception(f'{self.id()} no action decision has been made.')

        tools = OrderedDict()
        agents = []
        for action in actions:
            if is_agent(action):
                agents.append(action)
            else:
                if action.tool_name not in tools:
                    tools[action.tool_name] = []
                tools[action.tool_name].append(action)

        _group_name = None
        # agents and tools exist simultaneously, more than one agent/tool name
        if (agents and tools) or len(agents) > 1 or len(tools) > 1:
            _group_name = f"{self.id()}_{uuid.uuid1().hex}"

        # complex processing
        if _group_name:
            logger.warning(f"more than one agent an tool causing confusion, will choose the first one. {agents}")
            agents = [agents[0]] if agents else []
            for _, v in tools.items():
                actions = v
                break

        if agents:
            return AgentMessage(payload=actions,
                                caller=caller,
                                sender=self.id(),
                                receiver=actions[0].tool_name,
                                session_id=self.context.session_id if self.context else "",
                                headers={"context": self.context})
        else:
            return ToolMessage(payload=actions,
                               caller=caller,
                               sender=self.id(),
                               receiver=actions[0].tool_name,
                               session_id=self.context.session_id if self.context else "",
                               headers={"context": self.context})

    def post_run(self, policy_result: List[ActionModel], policy_input: Observation) -> Message:
        return self._agent_result(
            policy_result,
            policy_input.from_agent_name if policy_input.from_agent_name else policy_input.observer
        )

    async def async_post_run(self, policy_result: List[ActionModel], policy_input: Observation) -> Message:
        return self._agent_result(
            policy_result,
            policy_input.from_agent_name if policy_input.from_agent_name else policy_input.observer
        )

    def policy(self, observation: Observation, info: Dict[str, Any] = {}, **kwargs) -> List[ActionModel]:
        """The strategy of an agent can be to decide which tools to use in the environment, or to delegate tasks to other agents.

        Args:
            observation: The state observed from tools in the environment.
            info: Extended information is used to assist the agent to decide a policy.

        Returns:
            ActionModel sequence from agent policy
        """
        output = None
        if kwargs.get("output") and isinstance(kwargs.get("output"), StepOutput):
            output = kwargs["output"]

        # Get current step information for trace recording
        step = kwargs.get("step", 0)
        exp_id = kwargs.get("exp_id", None)
        source_span = trace.get_current_span()

        if hasattr(observation, 'context') and observation.context:
            self.task_histories = observation.context

        try:
            self._run_hooks_sync(self.context, HookPoint.PRE_LLM_CALL)
        except Exception as e:
            logger.warn(traceback.format_exc())

        self._finished = False
        self.desc_transform()
        images = observation.images if self.conf.use_vision else None
        if self.conf.use_vision and not images and observation.image:
            images = [observation.image]
            observation.images = images
        messages = self.messages_transform(content=observation.content,
                                           image_urls=observation.images)

        self._log_messages(messages)
        self.memory.add(MemoryItem(
            content=messages[-1]['content'],
            metadata={
                "role": messages[-1]['role'],
                "agent_name": self.id(),
                "tool_call_id": messages[-1].get("tool_call_id")
            }
        ))

        llm_response = None
        span_name = f"llm_call_{exp_id}"
        serializable_messages = self._to_serializable(messages)
        with trace.span(span_name) as llm_span:
            llm_span.set_attributes({
                "exp_id": exp_id,
                "step": step,
                "messages": json.dumps(serializable_messages, ensure_ascii=False)
            })
            if source_span:
                source_span.set_attribute("messages", json.dumps(serializable_messages, ensure_ascii=False))

            try:
                llm_response = call_llm_model(
                    self.llm,
                    messages=messages,
                    model=self.model_name,
                    temperature=self.conf.llm_config.llm_temperature,
                    tools=self.tools if not self.use_tools_in_prompt and self.tools else None
                )

                logger.info(f"Execute response: {llm_response.message}")
            except Exception as e:
                logger.warn(traceback.format_exc())
                raise e
            finally:
                if llm_response:
                    # update usage
                    self.update_context_usage(used_context_length=llm_response.usage['total_tokens'])
                    # update current step output
                    self.update_llm_output(llm_response)

                    use_tools = self.use_tool_list(llm_response)
                    is_use_tool_prompt = len(use_tools) > 0
                    if llm_response.error:
                        logger.info(f"llm result error: {llm_response.error}")
                    else:
                        info = {
                            "role": "assistant",
                            "agent_name": self.id(),
                            "tool_calls": llm_response.tool_calls if not self.use_tools_in_prompt else use_tools,
                            "is_use_tool_prompt": is_use_tool_prompt if not self.use_tools_in_prompt else False
                        }
                        self.memory.add(MemoryItem(
                            content=llm_response.content,
                            metadata=info
                        ))
                        # rewrite
                        self.context.context_info[self.id()] = info
                else:
                    logger.error(f"{self.id()} failed to get LLM response")
                    raise RuntimeError(f"{self.id()} failed to get LLM response")

        try:
            self._run_hooks_sync(self.context, HookPoint.POST_LLM_CALL)
        except Exception as e:
            logger.warn(traceback.format_exc())

        agent_result = sync_exec(self.resp_parse_func, llm_response)
        if not agent_result.is_call_tool:
            self._finished = True

        if output:
            output.add_part(MessageOutput(source=llm_response, json_parse=False))
            output.mark_finished()
        return agent_result.actions

    async def async_policy(self, observation: Observation, info: Dict[str, Any] = {}, **kwargs) -> List[ActionModel]:
        """The strategy of an agent can be to decide which tools to use in the environment, or to delegate tasks to other agents.

        Args:
            observation: The state observed from tools in the environment.
            info: Extended information is used to assist the agent to decide a policy.

        Returns:
            ActionModel sequence from agent policy
        """
        outputs = None
        if kwargs.get("outputs") and isinstance(kwargs.get("outputs"), Outputs):
            outputs = kwargs.get("outputs")

        # Get current step information for trace recording
        source_span = trace.get_current_span()

        if hasattr(observation, 'context') and observation.context:
            self.task_histories = observation.context

        try:
            events = []
            async for event in self.run_hooks(self.context, HookPoint.PRE_LLM_CALL):
                events.append(event)
        except Exception as e:
            logger.warn(traceback.format_exc())

        self._finished = False
        messages = await self._prepare_llm_input(observation, info, **kwargs)

        serializable_messages = self._to_serializable(messages)
        llm_response = None
        if source_span:
            source_span.set_attribute("messages", json.dumps(serializable_messages, ensure_ascii=False))
        try:
            llm_response = await self._call_llm_model(observation, messages, info, **kwargs)
        except Exception as e:
            logger.warn(traceback.format_exc())
            raise e
        finally:
            if llm_response:
                # update usage
                self.update_context_usage(used_context_length=llm_response.usage['total_tokens'])
                # update current step output
                self.update_llm_output(llm_response)

                use_tools = self.use_tool_list(llm_response)
                is_use_tool_prompt = len(use_tools) > 0
                if llm_response.error:
                    logger.info(f"llm result error: {llm_response.error}")
                else:
                    self.memory.add(MemoryItem(
                        content=llm_response.content,
                        metadata={
                            "role": "assistant",
                            "agent_name": self.id(),
                            "tool_calls": llm_response.tool_calls if not self.use_tools_in_prompt else use_tools,
                            "is_use_tool_prompt": is_use_tool_prompt if not self.use_tools_in_prompt else False
                        }
                    ))
            else:
                logger.error(f"{self.id()} failed to get LLM response")
                raise RuntimeError(f"{self.id()} failed to get LLM response")

        try:
            events = []
            async for event in self.run_hooks(self.context, HookPoint.POST_LLM_CALL):
                events.append(event)
        except Exception as e:
            logger.warn(traceback.format_exc())

        agent_result = sync_exec(self.resp_parse_func, llm_response)
        if not agent_result.is_call_tool:
            self._finished = True
        return agent_result.actions

    def _to_serializable(self, obj):
        if isinstance(obj, dict):
            return {k: self._to_serializable(v) for k, v in obj.items()}
        elif isinstance(obj, list):
            return [self._to_serializable(i) for i in obj]
        elif hasattr(obj, "to_dict"):
            return obj.to_dict()
        elif hasattr(obj, "model_dump"):
            return obj.model_dump()
        elif hasattr(obj, "dict"):
            return obj.dict()
        else:
            return obj

    async def llm_and_tool_execution(self, observation: Observation, messages: List[Dict[str, str]] = [],
                                     info: Dict[str, Any] = {}, **kwargs) -> List[ActionModel]:
        """Perform combined LLM call and tool execution operations.

        Args:
            observation: The state observed from the environment
            info: Extended information to assist the agent in decision-making
            **kwargs: Other parameters

        Returns:
            ActionModel sequence. If a tool is executed, includes the tool execution result.
        """
        # Get current step information for trace recording
        llm_response = await self._call_llm_model(observation, messages, info, **kwargs)
        if llm_response:
            use_tools = self.use_tool_list(llm_response)
            is_use_tool_prompt = len(use_tools) > 0
            if llm_response.error:
                logger.info(f"llm result error: {llm_response.error}")
            else:
                self.memory.add(MemoryItem(
                    content=llm_response.content,
                    metadata={
                        "role": "assistant",
                        "agent_name": self.id(),
                        "tool_calls": llm_response.tool_calls if not self.use_tools_in_prompt else use_tools,
                        "is_use_tool_prompt": is_use_tool_prompt if not self.use_tools_in_prompt else False
                    }
                ))
        else:
            logger.error(f"{self.id()} failed to get LLM response")
            raise RuntimeError(f"{self.id()} failed to get LLM response")

        agent_result = sync_exec(self.resp_parse_func, llm_response)
        if not agent_result.is_call_tool:
            self._finished = True
            return agent_result.actions
        else:
            result = await self._execute_tool(agent_result.actions)
            return result

    async def _prepare_llm_input(self, observation: Observation, info: Dict[str, Any] = {}, **kwargs):
        """Prepare LLM input
        Args:
            observation: The state observed from the environment
            info: Extended information to assist the agent in decision-making
            **kwargs: Other parameters
        """
        await self.async_desc_transform()
        images = observation.images if self.conf.use_vision else None
        if self.conf.use_vision and not images and observation.image:
            images = [observation.image]
        messages = self.messages_transform(content=observation.content,
                                           image_urls=images)

        self._log_messages(messages)
        self.memory.add(MemoryItem(
            content=messages[-1]['content'],
            metadata={
                "role": messages[-1]['role'],
                "agent_name": self.id(),
                "tool_call_id": messages[-1].get("tool_call_id")
            }
        ))

        return messages

    def _process_messages(self, messages: List[Dict[str, Any]], agent_context: AgentContext = None,
                          context: Context = None) -> Message:
        origin_messages = messages
        st = time.time()
        with trace.span(f"llm_context_process", attributes={
            "start_time": st
        }) as compress_span:
            if agent_context.context_rule is None:
                logger.debug('debug|skip process_messages context_rule is None')
                return messages
            origin_len = compressed_len = len(str(messages))
            origin_messages_count = truncated_messages_count = len(messages)
            try:
                prompt_processor = PromptProcessor(agent_context)
                result = prompt_processor.process_messages(messages, context)
                messages = result.processed_messages

                compressed_len = len(str(messages))
                truncated_messages_count = len(messages)
                logger.debug(
                    f'debug|llm_context_process|{origin_len}|{compressed_len}|{origin_messages_count}|{truncated_messages_count}|\n|{origin_messages}\n|{messages}')
                return messages
            finally:
                compress_span.set_attributes({
                    "end_time": time.time(),
                    "duration": time.time() - st,
                    # messages length
                    "origin_messages_count": origin_messages_count,
                    "truncated_messages_count": truncated_messages_count,
                    "truncated_ratio": round(truncated_messages_count / origin_messages_count, 2),
                    # token length
                    "origin_len": origin_len,
                    "compressed_len": compressed_len,
                    "compress_ratio": round(compressed_len / origin_len, 2)
                })

    async def _call_llm_model(self, observation: Observation, messages: List[Dict[str, str]] = [],
                              info: Dict[str, Any] = {}, **kwargs) -> ModelResponse:
        """Perform LLM call
        Args:
            observation: The state observed from the environment
            info: Extended information to assist the agent in decision-making
            **kwargs: Other parameters
        Returns:
            LLM response
        """
        outputs = None
        if kwargs.get("outputs") and isinstance(kwargs.get("outputs"), Outputs):
            outputs = kwargs.get("outputs")
        if not messages:
            messages = await self._prepare_llm_input(observation, self.agent_context, **kwargs)

        llm_response = None
        source_span = trace.get_current_span()
        serializable_messages = self._to_serializable(messages)

        if source_span:
            source_span.set_attribute("messages", json.dumps(serializable_messages, ensure_ascii=False))

        try:
            stream_mode = kwargs.get("stream", False)
            if stream_mode:
                llm_response = ModelResponse(id="", model="", content="", tool_calls=[])
                resp_stream = acall_llm_model_stream(
                    self.llm,
                    messages=messages,
                    model=self.model_name,
                    temperature=self.conf.llm_config.llm_temperature,
                    tools=self.tools if not self.use_tools_in_prompt and self.tools else None,
                    stream=True
                )

                async def async_call_llm(resp_stream, json_parse=False):
                    llm_resp = ModelResponse(id="", model="", content="", tool_calls=[])

                    # Async streaming with acall_llm_model
                    async def async_generator():
                        async for chunk in resp_stream:
                            if chunk.content:
                                llm_resp.content += chunk.content
                                yield chunk.content
                            if chunk.tool_calls:
                                llm_resp.tool_calls.extend(chunk.tool_calls)
                            if chunk.error:
                                llm_resp.error = chunk.error
                            llm_resp.id = chunk.id
                            llm_resp.model = chunk.model
                            llm_resp.usage = nest_dict_counter(llm_resp.usage, chunk.usage)

                    return MessageOutput(source=async_generator(), json_parse=json_parse), llm_resp

                output, response = await async_call_llm(resp_stream)
                llm_response = response

                if eventbus is not None and resp_stream:
                    output_message = Message(
                        category=Constants.OUTPUT,
                        payload=output,
                        sender=self.id(),
                        session_id=self.context.session_id if self.context else "",
                        headers={"context": self.context}
                    )
                    await eventbus.publish(output_message)
                elif not self.event_driven and outputs:
                    outputs.add_output(output)

            else:
                llm_response = await acall_llm_model(
                    self.llm,
                    messages=messages,
                    model=self.model_name,
                    temperature=self.conf.llm_config.llm_temperature,
                    tools=self.tools if not self.use_tools_in_prompt and self.tools else None,
                    stream=kwargs.get("stream", False)
                )
                if eventbus is None:
                    logger.warn("=============== eventbus is none ============")
                if eventbus is not None and llm_response:
                    await eventbus.publish(Message(
                        category=Constants.OUTPUT,
                        payload=llm_response,
                        sender=self.id(),
                        session_id=self.context.session_id if self.context else "",
                        headers={"context": self.context}
                    ))
                elif not self.event_driven and outputs:
                    outputs.add_output(MessageOutput(source=llm_response, json_parse=False))

            logger.info(f"Execute response: {json.dumps(llm_response.to_dict(), ensure_ascii=False)}")


        except Exception as e:
            logger.warn(traceback.format_exc())
            raise e
        finally:
            return llm_response

    async def _execute_tool(self, actions: List[ActionModel]) -> Any:
        """Execute tool calls

        Args:
            action: The action(s) to execute

        Returns:
            The result of tool execution
        """
        tool_actions = []
        for act in actions:
            if is_agent(act):
                continue
            else:
                tool_actions.append(act)

        msg = None
        terminated = False
        # group action by tool name
        tool_mapping = dict()
        reward = 0.0
        # Directly use or use tools after creation.
        for act in tool_actions:
            if not self.tools_instances or (self.tools_instances and act.tool_name not in self.tools):
                # Dynamically only use default config in module.
                conf = self.tools_conf.get(act.tool_name)
                if not conf:
                    conf = ToolConfig(exit_on_failure=self.task.conf.get('exit_on_failure'))
                tool = ToolFactory(act.tool_name, conf=conf, asyn=conf.use_async if conf else False)
                if isinstance(tool, Tool):
                    tool.reset()
                elif isinstance(tool, AsyncTool):
                    await tool.reset()
                tool_mapping[act.tool_name] = []
                self.tools_instances[act.tool_name] = tool
            if act.tool_name not in tool_mapping:
                tool_mapping[act.tool_name] = []
            tool_mapping[act.tool_name].append(act)

        observation = None

        for tool_name, action in tool_mapping.items():
            # Execute action using browser tool and unpack all return values
            if isinstance(self.tools_instances[tool_name], Tool):
                message = self.tools_instances[tool_name].step(action)
            elif isinstance(self.tools_instances[tool_name], AsyncTool):
                # todo sandbox
                message = await self.tools_instances[tool_name].step(action, agent=self)
            else:
                logger.warning(f"Unsupported tool type: {self.tools_instances[tool_name]}")
                continue

            observation, reward, terminated, _, info = message.payload

            # Check if there's an exception in info
            if info.get("exception"):
                color_log(f"Agent {self.id()} _execute_tool failed with exception: {info['exception']}",
                          color=Color.red)
                msg = f"Agent {self.id()} _execute_tool failed with exception: {info['exception']}"
            logger.info(f"Agent {self.id()} _execute_tool finished by tool action: {action}.")
            log_ob = Observation(content='' if observation.content is None else observation.content,
                                 action_result=observation.action_result)
            trace_logger.info(f"{tool_name} observation: {log_ob}", color=Color.green)
            self.memory.add(MemoryItem(
                content=observation.content,
                metadata={
                    "role": "tool",
                    "agent_name": self.id(),
                    "tool_call_id": action[0].tool_id
                }
            ))
        return [ActionModel(agent_name=self.id(), policy_info=observation.content)]

    def _init_context(self, context: Context):
        super()._init_context(context)
        # Generate default configuration when context_rule is empty
        llm_config = self.conf.llm_config
        context_rule = self.context_rule
        if context_rule is None:
            context_rule = ContextRuleConfig(
                optimization_config=OptimizationConfig(
                    enabled=True,
                    max_token_budget_ratio=1.0
                ),
                llm_compression_config=LlmCompressionConfig(
                    enabled=False  # Compression disabled by default
                )
            )
        self.agent_context.set_model_config(llm_config)
        self.agent_context.context_rule = context_rule
        self.agent_context.system_prompt = self.system_prompt
        self.agent_context.agent_prompt = self.agent_prompt
        logger.debug(f'init_context llm_agent {self.name()} {self.agent_context} {self.conf} {self.context_rule}')

    def update_system_prompt(self, system_prompt: str):
        self.system_prompt = system_prompt
        self.agent_context.system_prompt = system_prompt
        logger.info(f"Agent {self.name()} system_prompt updated")

    def update_agent_prompt(self, agent_prompt: str):
        self.agent_prompt = agent_prompt
        self.agent_context.agent_prompt = agent_prompt
        logger.info(f"Agent {self.name()} agent_prompt updated")

    def update_context_rule(self, context_rule: ContextRuleConfig):
        self.agent_context.context_rule = context_rule
        logger.info(f"Agent {self.name()} context_rule updated")

    def update_context_usage(self, used_context_length: int = None, total_context_length: int = None):
        self.agent_context.update_context_usage(used_context_length, total_context_length)
        logger.debug(f"Agent {self.name()} context usage updated: {self.agent_context.context_usage}")

    def update_llm_output(self, llm_response: ModelResponse):
        self.agent_context.set_llm_output(llm_response)
        logger.debug(f"Agent {self.name()} llm output updated: {self.agent_context.llm_output}")

    async def run_hooks(self, context: Context, hook_point: str):
        """Execute hooks asynchronously"""
        from aworld.runners.hook.hook_factory import HookFactory
        from aworld.core.event.base import Message

        # Get all hooks for the specified hook point
        all_hooks = HookFactory.hooks(hook_point)
        hooks = all_hooks.get(hook_point, [])

        for hook in hooks:
            try:
                # Create a temporary Message object to pass to the hook
                message = Message(
                    category="agent_hook",
                    payload=None,
                    sender=self.id(),
                    session_id=context.session_id if hasattr(context, 'session_id') else None,
                    headers={"context": self.context}
                )

                # Execute hook
                msg = await hook.exec(message, context)
                if msg:
                    logger.debug(f"Hook {hook.point()} executed successfully")
                    yield msg
            except Exception as e:
                logger.warning(f"Hook {hook.point()} execution failed: {traceback.format_exc()}")

    def _run_hooks_sync(self, context: Context, hook_point: str):
        """Execute hooks synchronously"""
        # Use sync_exec to execute asynchronous hook logic
        try:
            sync_exec(self.run_hooks, context, hook_point)
        except Exception as e:
            logger.warn(f"Failed to execute hooks for {hook_point}: {traceback.format_exc()}")