Final_Assignment_AWorld / examples /gaia /gaia_agent_runner.py
Duibonduil's picture
Upload 9 files
3a235a9 verified
raw
history blame
6.87 kB
import json
import logging
import os
import re
import traceback
from typing import AsyncGenerator
import uuid
from aworld.config.conf import AgentConfig, TaskConfig
from aworld.agents.llm_agent import Agent
from aworld.core.task import Task
from aworld.runner import Runners
from aworld.output.ui.base import AworldUI
from aworld.output.ui.markdown_aworld_ui import MarkdownAworldUI
from aworld.output.base import Output
from .utils import (
add_file_path,
load_dataset_meta_dict,
question_scorer,
)
from .prompt import system_prompt
logger = logging.getLogger(__name__)
class GaiaAgentRunner:
"""
Gaia Agent Runner
"""
def __init__(
self,
llm_provider: str,
llm_model_name: str,
llm_base_url: str,
llm_api_key: str,
llm_temperature: float = 0.0,
mcp_config: dict = {},
):
self.agent_config = AgentConfig(
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_api_key=llm_api_key,
llm_base_url=llm_base_url,
llm_temperature=llm_temperature,
)
self.super_agent = Agent(
conf=self.agent_config,
name="gaia_super_agent",
system_prompt=system_prompt,
mcp_config=mcp_config,
mcp_servers=mcp_config.get("mcpServers", {}).keys(),
)
self.gaia_dataset_path = os.path.abspath(
os.getenv(
"GAIA_DATASET_PATH",
os.path.join(os.path.dirname(os.path.abspath(__file__)), "GAIA", "2023"),
)
)
self.full_dataset = load_dataset_meta_dict(self.gaia_dataset_path)
logger.info(
f"Gaia Agent Runner initialized: super_agent={self.super_agent}, agent_config={self.agent_config}, gaia_dataset_path={self.gaia_dataset_path}, full_dataset={len(self.full_dataset)}"
)
async def run(self, prompt: str):
yield (f"\n### GAIA Agent Start!")
mcp_servers = "\n- ".join(self.super_agent.mcp_servers)
yield (f"\n```gaia_agent_status\n- {mcp_servers}\n```\n")
question = None
data_item = None
task_id = None
try:
json_data = json.loads(prompt)
task_id = json_data["task_id"]
data_item = self.full_dataset[task_id]
question = add_file_path(data_item, file_path=self.gaia_dataset_path)[
"Question"
]
yield (f"\n```gaia_question\n{json.dumps(data_item, indent=2)}\n```\n")
except Exception as e:
pass
if not question:
logger.warning(
"Could not find GAIA question for prompt, chat using prompt directly!"
)
yield (f"\n{prompt}\n")
question = prompt
try:
task = Task(
id=task_id + "." + uuid.uuid1().hex if task_id else uuid.uuid1().hex,
input=question,
agent=self.super_agent,
event_driven=False,
conf=TaskConfig(max_steps=20),
)
last_output: Output = None
rich_ui = MarkdownAworldUI()
async for output in Runners.streamed_run_task(task).stream_events():
logger.info(f"Gaia Agent Ouput: {output}")
res = await AworldUI.parse_output(output, rich_ui)
for item in res if isinstance(res, list) else [res]:
if isinstance(item, AsyncGenerator):
async for sub_item in item:
yield sub_item
else:
yield item
last_output = item
logger.info(f"Gaia Agent Last Output: {last_output}")
if data_item and last_output:
final_response = self._judge_answer(data_item, last_output)
yield final_response
except Exception as e:
logger.error(f"Error processing {prompt}, error: {traceback.format_exc()}")
def _judge_answer(self, data_item: dict, result: Output):
answer = result
match = re.search(r"<answer>(.*?)</answer>", answer)
if match:
answer = match.group(1)
logger.info(f"Agent answer: {answer}")
logger.info(f"Correct answer: {data_item['Final answer']}")
if question_scorer(answer, data_item["Final answer"]):
logger.info(f"Question {data_item['task_id']} Correct!")
else:
logger.info(f"Question {data_item['task_id']} Incorrect!")
# Create the new result record
correct = question_scorer(answer, data_item["Final answer"])
new_result = {
"task_id": data_item["task_id"],
"level": data_item["Level"],
"question": data_item["Question"],
"answer": data_item["Final answer"],
"response": answer,
"is_correct": correct,
}
return f"\n## Final Result: {'✅' if correct else '❌'}\n \n```gaia_result\n{json.dumps(new_result, indent=2)}\n```"
else:
new_result = answer
return f"\n## Final Result:\n \n```gaia_result\n{json.dumps(new_result, indent=2)}\n```"
if __name__ == "__main__":
import asyncio
import argparse
from datetime import datetime
logger = logging.getLogger(__name__)
output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "output")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_file = os.path.join(
output_dir, f"output_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
)
async def main():
parser = argparse.ArgumentParser()
parser.add_argument("--prompt", type=str, default="")
args = parser.parse_args()
try:
prompt = args.prompt
llm_provider = os.getenv("LLM_PROVIDER")
llm_model_name = os.getenv("LLM_MODEL_NAME")
llm_api_key = os.getenv("LLM_API_KEY")
llm_base_url = os.getenv("LLM_BASE_URL")
llm_temperature = os.getenv("LLM_TEMPERATURE", 0.0)
def send_output(output):
with open(output_file, "a") as f:
f.write(f"{output}\n")
async for i in GaiaAgentRunner(
llm_provider=llm_provider,
llm_model_name=llm_model_name,
llm_base_url=llm_base_url,
llm_api_key=llm_api_key,
llm_temperature=llm_temperature,
).run(prompt):
send_output(i)
except Exception as e:
logger.error(
f"Error processing {args.prompt}, error: {traceback.format_exc()}"
)
asyncio.run(main())