Duibonduil's picture
Upload 10 files
ae64487 verified
raw
history blame
26.5 kB
import os
from typing import Any, Dict, List, Generator, AsyncGenerator
from openai import OpenAI, AsyncOpenAI
from aworld.config.conf import ClientType
from aworld.core.llm_provider_base import LLMProviderBase
from aworld.models.llm_http_handler import LLMHTTPHandler
from aworld.models.model_response import ModelResponse, LLMResponseError
from aworld.logs.util import logger
from aworld.models.utils import usage_process
class OpenAIProvider(LLMProviderBase):
"""OpenAI provider implementation.
"""
def _init_provider(self):
"""Initialize OpenAI provider.
Returns:
OpenAI provider instance.
"""
# Get API key
api_key = self.api_key
if not api_key:
env_var = "OPENAI_API_KEY"
api_key = os.getenv(env_var, "")
if not api_key:
raise ValueError(
f"OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")
base_url = self.base_url
if not base_url:
base_url = os.getenv("OPENAI_ENDPOINT", "https://api.openai.com/v1")
self.is_http_provider = False
if self.kwargs.get("client_type", ClientType.SDK) == ClientType.HTTP:
logger.info(f"Using HTTP provider for OpenAI")
self.http_provider = LLMHTTPHandler(
base_url=base_url,
api_key=api_key,
model_name=self.model_name,
max_retries=self.kwargs.get("max_retries", 3)
)
self.is_http_provider = True
return self.http_provider
else:
return OpenAI(
api_key=api_key,
base_url=base_url,
timeout=self.kwargs.get("timeout", 180),
max_retries=self.kwargs.get("max_retries", 3)
)
def _init_async_provider(self):
"""Initialize async OpenAI provider.
Returns:
Async OpenAI provider instance.
"""
# Get API key
api_key = self.api_key
if not api_key:
env_var = "OPENAI_API_KEY"
api_key = os.getenv(env_var, "")
if not api_key:
raise ValueError(
f"OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")
base_url = self.base_url
if not base_url:
base_url = os.getenv("OPENAI_ENDPOINT", "https://api.openai.com/v1")
return AsyncOpenAI(
api_key=api_key,
base_url=base_url,
timeout=self.kwargs.get("timeout", 180),
max_retries=self.kwargs.get("max_retries", 3)
)
@classmethod
def supported_models(cls) -> list[str]:
return ["gpt-4o", "gpt-4", "gpt-3.5-turbo", "o3-mini", "gpt-4o-mini", "deepseek-chat", "deepseek-reasoner",
r"qwq-.*", r"qwen-.*"]
def preprocess_messages(self, messages: List[Dict[str, str]]) -> List[Dict[str, str]]:
"""Preprocess messages, use OpenAI format directly.
Args:
messages: OpenAI format message list.
Returns:
Processed message list.
"""
for message in messages:
if message["role"] == "assistant" and "tool_calls" in message and message["tool_calls"]:
if message["content"] is None: message["content"] = ""
for tool_call in message["tool_calls"]:
if "function" not in tool_call and "name" in tool_call and "arguments" in tool_call:
tool_call["function"] = {"name": tool_call["name"], "arguments": tool_call["arguments"]}
return messages
def postprocess_response(self, response: Any) -> ModelResponse:
"""Process OpenAI response.
Args:
response: OpenAI response object.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if ((not isinstance(response, dict) and (not hasattr(response, 'choices') or not response.choices))
or (isinstance(response, dict) and not response.get("choices"))):
error_msg = ""
if hasattr(response, 'error') and response.error and isinstance(response.error, dict):
error_msg = response.error.get('message', '')
elif hasattr(response, 'msg'):
error_msg = response.msg
raise LLMResponseError(
error_msg if error_msg else "Unknown error",
self.model_name or "unknown",
response
)
return ModelResponse.from_openai_response(response)
def postprocess_stream_response(self, chunk: Any) -> ModelResponse:
"""Process OpenAI streaming response chunk.
Args:
chunk: OpenAI response chunk.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
# Check if chunk contains error
if hasattr(chunk, 'error') or (isinstance(chunk, dict) and chunk.get('error')):
error_msg = chunk.error if hasattr(chunk, 'error') else chunk.get('error', 'Unknown error')
raise LLMResponseError(
error_msg,
self.model_name or "unknown",
chunk
)
# process tool calls
if (hasattr(chunk, 'choices') and chunk.choices and chunk.choices[0].delta and chunk.choices[0].delta.tool_calls) or (
isinstance(chunk, dict) and chunk.get("choices") and chunk["choices"] and chunk["choices"][0].get("delta", {}).get("tool_calls")):
tool_calls = chunk.choices[0].delta.tool_calls if hasattr(chunk, 'choices') else chunk["choices"][0].get("delta", {}).get("tool_calls")
for tool_call in tool_calls:
index = tool_call.index if hasattr(tool_call, 'index') else tool_call["index"]
func_name = tool_call.function.name if hasattr(tool_call, 'function') else tool_call.get("function", {}).get("name")
func_args = tool_call.function.arguments if hasattr(tool_call, 'function') else tool_call.get("function", {}).get("arguments")
if index >= len(self.stream_tool_buffer):
self.stream_tool_buffer.append({
"id": tool_call.id if hasattr(tool_call, 'id') else tool_call.get("id"),
"type": "function",
"function": {
"name": func_name,
"arguments": func_args
}
})
else:
self.stream_tool_buffer[index]["function"]["arguments"] += func_args
processed_chunk = chunk
if hasattr(processed_chunk, 'choices'):
processed_chunk.choices[0].delta.tool_calls = None
else:
processed_chunk["choices"][0]["delta"]["tool_calls"] = None
resp = ModelResponse.from_openai_stream_chunk(processed_chunk)
if (not resp.content and not resp.usage.get("total_tokens", 0)):
return None
if (hasattr(chunk, 'choices') and chunk.choices and chunk.choices[0].finish_reason) or (
isinstance(chunk, dict) and chunk.get("choices") and chunk["choices"] and chunk["choices"][0].get(
"finish_reason")):
finish_reason = chunk.choices[0].finish_reason if hasattr(chunk, 'choices') else chunk["choices"][0].get(
"finish_reason")
if self.stream_tool_buffer:
tool_call_chunk = {
"id": chunk.id if hasattr(chunk, 'id') else chunk.get("id"),
"model": chunk.model if hasattr(chunk, 'model') else chunk.get("model"),
"object": chunk.object if hasattr(chunk, 'object') else chunk.get("object"),
"choices": [
{
"delta": {
"role": "assistant",
"content": "",
"tool_calls": self.stream_tool_buffer
}
}
]
}
self.stream_tool_buffer = []
return ModelResponse.from_openai_stream_chunk(tool_call_chunk)
return ModelResponse.from_openai_stream_chunk(chunk)
def completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Synchronously call OpenAI to generate response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.provider:
raise RuntimeError(
"Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")
processed_messages = self.preprocess_messages(messages)
try:
openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
if self.is_http_provider:
response = self.http_provider.sync_call(openai_params)
else:
response = self.provider.chat.completions.create(**openai_params)
if (hasattr(response, 'code') and response.code != 0) or (
isinstance(response, dict) and response.get("code", 0) != 0):
error_msg = getattr(response, 'msg', 'Unknown error')
logger.warn(f"API Error: {error_msg}")
raise LLMResponseError(error_msg, kwargs.get("model_name", self.model_name or "unknown"), response)
if not response:
raise LLMResponseError("Empty response", kwargs.get("model_name", self.model_name or "unknown"))
resp = self.postprocess_response(response)
usage_process(resp.usage)
return resp
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.warn(f"Error in OpenAI completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
def stream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Generator[ModelResponse, None, None]:
"""Synchronously call OpenAI to generate streaming response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
Generator yielding ModelResponse chunks.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.provider:
raise RuntimeError(
"Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")
processed_messages = self.preprocess_messages(messages)
usage={
"completion_tokens": 0,
"prompt_tokens": 0,
"total_tokens": 0
}
try:
openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
openai_params["stream"] = True
if self.is_http_provider:
response_stream = self.http_provider.sync_stream_call(openai_params)
else:
response_stream = self.provider.chat.completions.create(**openai_params)
for chunk in response_stream:
if not chunk:
continue
resp = self.postprocess_stream_response(chunk)
if resp:
self._accumulate_chunk_usage(usage, resp.usage)
yield resp
usage_process(usage)
except Exception as e:
logger.warn(f"Error in stream_completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
async def astream_completion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> AsyncGenerator[ModelResponse, None]:
"""Asynchronously call OpenAI to generate streaming response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
AsyncGenerator yielding ModelResponse chunks.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.async_provider:
raise RuntimeError(
"Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")
processed_messages = self.preprocess_messages(messages)
usage = {
"completion_tokens": 0,
"prompt_tokens": 0,
"total_tokens": 0
}
try:
openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
openai_params["stream"] = True
if self.is_http_provider:
async for chunk in self.http_provider.async_stream_call(openai_params):
if not chunk:
continue
resp = self.postprocess_stream_response(chunk)
self._accumulate_chunk_usage(usage, resp.usage)
yield resp
else:
response_stream = await self.async_provider.chat.completions.create(**openai_params)
async for chunk in response_stream:
if not chunk:
continue
resp = self.postprocess_stream_response(chunk)
if resp:
self._accumulate_chunk_usage(usage, resp.usage)
yield resp
usage_process(usage)
except Exception as e:
logger.warn(f"Error in astream_completion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
async def acompletion(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> ModelResponse:
"""Asynchronously call OpenAI to generate response.
Args:
messages: Message list.
temperature: Temperature parameter.
max_tokens: Maximum number of tokens to generate.
stop: List of stop sequences.
**kwargs: Other parameters.
Returns:
ModelResponse object.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.async_provider:
raise RuntimeError(
"Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")
processed_messages = self.preprocess_messages(messages)
try:
openai_params = self.get_openai_params(processed_messages, temperature, max_tokens, stop, **kwargs)
if self.is_http_provider:
response = await self.http_provider.async_call(openai_params)
else:
response = await self.async_provider.chat.completions.create(**openai_params)
if (hasattr(response, 'code') and response.code != 0) or (
isinstance(response, dict) and response.get("code", 0) != 0):
error_msg = getattr(response, 'msg', 'Unknown error')
logger.warn(f"API Error: {error_msg}")
raise LLMResponseError(error_msg, kwargs.get("model_name", self.model_name or "unknown"), response)
if not response:
raise LLMResponseError("Empty response", kwargs.get("model_name", self.model_name or "unknown"))
resp = self.postprocess_response(response)
usage_process(resp.usage)
return resp
except Exception as e:
if isinstance(e, LLMResponseError):
raise e
logger.warn(f"Error in acompletion: {e}")
raise LLMResponseError(str(e), kwargs.get("model_name", self.model_name or "unknown"))
def get_openai_params(self,
messages: List[Dict[str, str]],
temperature: float = 0.0,
max_tokens: int = None,
stop: List[str] = None,
**kwargs) -> Dict[str, Any]:
openai_params = {
"model": kwargs.get("model_name", self.model_name or ""),
"messages": messages,
"temperature": temperature,
"max_tokens": max_tokens,
"stop": stop
}
supported_params = [
"max_completion_tokens", "meta_data", "modalities", "n", "parallel_tool_calls",
"prediction", "reasoning_effort", "service_tier", "stream_options", "web_search_options"
"frequency_penalty", "logit_bias", "logprobs", "top_logprobs",
"presence_penalty", "response_format", "seed", "stream", "top_p",
"user", "function_call", "functions", "tools", "tool_choice"
]
for param in supported_params:
if param in kwargs:
openai_params[param] = kwargs[param]
return openai_params
def speech_to_text(self,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs) -> ModelResponse:
"""Convert speech to text.
Uses OpenAI's speech-to-text API to convert audio files to text.
Args:
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters, may include:
- model: Transcription model name, defaults to "whisper-1".
- response_format: Response format, defaults to "text".
- temperature: Sampling temperature, defaults to 0.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.provider:
raise RuntimeError(
"Sync provider not initialized. Make sure 'sync_enabled' parameter is set to True in initialization.")
try:
# Prepare parameters
transcription_params = {
"model": kwargs.get("model", "whisper-1"),
"response_format": kwargs.get("response_format", "text"),
"temperature": kwargs.get("temperature", 0)
}
# Add optional parameters
if language:
transcription_params["language"] = language
if prompt:
transcription_params["prompt"] = prompt
# Open file (if path is provided)
if isinstance(audio_file, str):
with open(audio_file, "rb") as file:
transcription_response = self.provider.audio.transcriptions.create(
file=file,
**transcription_params
)
else:
# If already a file object
transcription_response = self.provider.audio.transcriptions.create(
file=audio_file,
**transcription_params
)
# Create ModelResponse
return ModelResponse(
id=f"stt-{hash(str(transcription_response)) & 0xffffffff:08x}",
model=transcription_params["model"],
content=transcription_response.text if hasattr(transcription_response, 'text') else str(
transcription_response),
raw_response=transcription_response,
message={
"role": "assistant",
"content": transcription_response.text if hasattr(transcription_response, 'text') else str(
transcription_response)
}
)
except Exception as e:
logger.warn(f"Speech-to-text error: {e}")
raise LLMResponseError(str(e), kwargs.get("model", "whisper-1"))
async def aspeech_to_text(self,
audio_file: str,
language: str = None,
prompt: str = None,
**kwargs) -> ModelResponse:
"""Asynchronously convert speech to text.
Uses OpenAI's speech-to-text API to convert audio files to text.
Args:
audio_file: Path to audio file or file object.
language: Audio language, optional.
prompt: Transcription prompt, optional.
**kwargs: Other parameters, may include:
- model: Transcription model name, defaults to "whisper-1".
- response_format: Response format, defaults to "text".
- temperature: Sampling temperature, defaults to 0.
Returns:
ModelResponse: Unified model response object, with content field containing the transcription result.
Raises:
LLMResponseError: When LLM response error occurs.
"""
if not self.async_provider:
raise RuntimeError(
"Async provider not initialized. Make sure 'async_enabled' parameter is set to True in initialization.")
try:
# Prepare parameters
transcription_params = {
"model": kwargs.get("model", "whisper-1"),
"response_format": kwargs.get("response_format", "text"),
"temperature": kwargs.get("temperature", 0)
}
# Add optional parameters
if language:
transcription_params["language"] = language
if prompt:
transcription_params["prompt"] = prompt
# Open file (if path is provided)
if isinstance(audio_file, str):
with open(audio_file, "rb") as file:
transcription_response = await self.async_provider.audio.transcriptions.create(
file=file,
**transcription_params
)
else:
# If already a file object
transcription_response = await self.async_provider.audio.transcriptions.create(
file=audio_file,
**transcription_params
)
# Create ModelResponse
return ModelResponse(
id=f"stt-{hash(str(transcription_response)) & 0xffffffff:08x}",
model=transcription_params["model"],
content=transcription_response.text if hasattr(transcription_response, 'text') else str(
transcription_response),
raw_response=transcription_response,
message={
"role": "assistant",
"content": transcription_response.text if hasattr(transcription_response, 'text') else str(
transcription_response)
}
)
except Exception as e:
logger.warn(f"Async speech-to-text error: {e}")
raise LLMResponseError(str(e), kwargs.get("model", "whisper-1"))
class AzureOpenAIProvider(OpenAIProvider):
"""Azure OpenAI provider implementation.
"""
def _init_provider(self):
"""Initialize Azure OpenAI provider.
Returns:
Azure OpenAI provider instance.
"""
from langchain_openai import AzureChatOpenAI
# Get API key
api_key = self.api_key
if not api_key:
env_var = "AZURE_OPENAI_API_KEY"
api_key = os.getenv(env_var, "")
if not api_key:
raise ValueError(
f"Azure OpenAI API key not found, please set {env_var} environment variable or provide it in the parameters")
# Get API version
api_version = self.kwargs.get("api_version", "") or os.getenv("AZURE_OPENAI_API_VERSION", "2025-01-01-preview")
# Get endpoint
azure_endpoint = self.base_url
if not azure_endpoint:
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT", "")
if not azure_endpoint:
raise ValueError(
"Azure OpenAI endpoint not found, please set AZURE_OPENAI_ENDPOINT environment variable or provide it in the parameters")
return AzureChatOpenAI(
model=self.model_name or "gpt-4o",
temperature=self.kwargs.get("temperature", 0.0),
api_version=api_version,
azure_endpoint=azure_endpoint,
api_key=api_key
)