Spaces:
Sleeping
Sleeping
| # coding: utf-8 | |
| # Copyright (c) 2025 inclusionAI. | |
| import asyncio | |
| import json | |
| import os | |
| from dotenv import load_dotenv | |
| from aworld.config.conf import AgentConfig, TaskConfig | |
| from aworld.agents.llm_agent import Agent | |
| from aworld.core.task import Task | |
| from aworld.runner import Runners | |
| async def run(): | |
| load_dotenv() | |
| llm_provider = os.getenv("LLM_PROVIDER_WEATHER", "openai") | |
| llm_model_name = os.getenv("LLM_MODEL_NAME_WEATHER") | |
| llm_api_key = os.getenv("LLM_API_KEY_WEATHER") | |
| llm_base_url = os.getenv("LLM_BASE_URL_WEATHER") | |
| llm_temperature = os.getenv("LLM_TEMPERATURE_WEATHER", 0.0) | |
| agent_config = AgentConfig( | |
| llm_provider=llm_provider, | |
| llm_model_name=llm_model_name, | |
| llm_api_key=llm_api_key, | |
| llm_base_url=llm_base_url, | |
| llm_temperature=llm_temperature, | |
| ) | |
| mcp_servers = ["tavily-mcp"] | |
| path_cwd = os.path.dirname(os.path.abspath(__file__)) | |
| mcp_path = os.path.join(path_cwd, "mcp.json") | |
| with open(mcp_path, "r") as f: | |
| mcp_config = json.load(f) | |
| search_sys_prompt = "You are a versatile assistant" | |
| search = Agent( | |
| conf=agent_config, | |
| name="search_agent", | |
| system_prompt=search_sys_prompt, | |
| mcp_config=mcp_config, | |
| mcp_servers=mcp_servers, | |
| ) | |
| # Run agent | |
| task = Task( | |
| input="Use tavily-mcp to check what tourist attractions are in Hangzhou", | |
| agent=search, | |
| conf=TaskConfig(), | |
| ) | |
| result = Runners.sync_run_task(task) | |
| print( "----------------------------------------------------------------------------------------------") | |
| print(result) | |
| if __name__ == "__main__": | |
| asyncio.run(run()) |