Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- aworld/core/agent/agent_desc.py +89 -0
- aworld/core/agent/base.py +305 -0
- aworld/core/agent/swarm.py +746 -0
aworld/core/agent/agent_desc.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Copyright (c) 2025 inclusionAI.
|
3 |
+
from typing import Dict, Any
|
4 |
+
|
5 |
+
from aworld.core.agent.base import AgentFactory
|
6 |
+
from aworld.logs.util import logger
|
7 |
+
|
8 |
+
|
9 |
+
def get_agent_desc() -> Dict[str, dict]:
|
10 |
+
"""Utility method of generate description of agents.
|
11 |
+
|
12 |
+
The agent can also serve as a tool to be called.
|
13 |
+
The standard protocol can be transformed based on the API of different llm.
|
14 |
+
Define as follows:
|
15 |
+
```
|
16 |
+
{
|
17 |
+
"agent_name": {
|
18 |
+
"desc": "An agent description.",
|
19 |
+
"abilities": [
|
20 |
+
{
|
21 |
+
"name": "ability name",
|
22 |
+
"desc": "ability description.",
|
23 |
+
"params": {
|
24 |
+
"param_name": {
|
25 |
+
"desc": "param description.",
|
26 |
+
"type": "param type, such as int, str, etc.",
|
27 |
+
"required": True | False
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
31 |
+
]
|
32 |
+
}
|
33 |
+
}
|
34 |
+
```
|
35 |
+
"""
|
36 |
+
|
37 |
+
descs = dict()
|
38 |
+
for agent in AgentFactory:
|
39 |
+
agent_val_dict = dict()
|
40 |
+
descs[agent] = agent_val_dict
|
41 |
+
|
42 |
+
agent_val_dict["desc"] = AgentFactory.desc(agent)
|
43 |
+
abilities = []
|
44 |
+
ability_dict = dict()
|
45 |
+
# all agent has only `policy` ability now
|
46 |
+
ability_dict["name"] = "policy"
|
47 |
+
|
48 |
+
# The same as agent description.
|
49 |
+
ability_dict["desc"] = AgentFactory.desc(agent)
|
50 |
+
ability_dict["params"] = dict()
|
51 |
+
|
52 |
+
# content in observation
|
53 |
+
ability_dict["params"]["content"] = {
|
54 |
+
"desc": "The status information of the agent making the decision, which may be sourced from the env tool or another agent or self.",
|
55 |
+
"type": "str",
|
56 |
+
"required": True
|
57 |
+
}
|
58 |
+
ability_dict["params"]["info"] = {
|
59 |
+
"desc": "Some extended information provided to the agent for decision-making.",
|
60 |
+
"type": "str",
|
61 |
+
"required": False
|
62 |
+
}
|
63 |
+
abilities.append(ability_dict)
|
64 |
+
agent_val_dict["abilities"] = abilities
|
65 |
+
return descs
|
66 |
+
|
67 |
+
|
68 |
+
def get_agent_desc_by_name(name: str) -> Dict[str, Any]:
|
69 |
+
return get_agent_desc().get(name, None)
|
70 |
+
|
71 |
+
|
72 |
+
def agent_handoffs_desc(agent: 'Agent', use_all: bool = False) -> Dict[str, dict]:
|
73 |
+
if not agent:
|
74 |
+
if use_all:
|
75 |
+
# use all agent description
|
76 |
+
return get_agent_desc()
|
77 |
+
logger.warning(f"no agent to gen description!")
|
78 |
+
return {}
|
79 |
+
|
80 |
+
desc = {}
|
81 |
+
# agent.handoffs never is None
|
82 |
+
for reachable in agent.handoffs:
|
83 |
+
res = get_agent_desc_by_name(reachable)
|
84 |
+
if not res:
|
85 |
+
logger.warning(f"{reachable} can not find in the agent factory, ignored it.")
|
86 |
+
continue
|
87 |
+
desc[reachable] = res
|
88 |
+
|
89 |
+
return desc
|
aworld/core/agent/base.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Copyright (c) 2025 inclusionAI.
|
3 |
+
|
4 |
+
import abc
|
5 |
+
import uuid
|
6 |
+
|
7 |
+
import aworld.trace as trace
|
8 |
+
|
9 |
+
from typing import Generic, TypeVar, Dict, Any, List, Tuple, Union
|
10 |
+
|
11 |
+
from pydantic import BaseModel
|
12 |
+
|
13 |
+
from aworld.config.conf import AgentConfig, load_config, ConfigDict
|
14 |
+
from aworld.core.common import Observation, ActionModel
|
15 |
+
from aworld.core.context.base import AgentContext, Context
|
16 |
+
from aworld.core.event import eventbus
|
17 |
+
from aworld.core.event.base import Message, Constants
|
18 |
+
from aworld.core.factory import Factory
|
19 |
+
from aworld.logs.util import logger
|
20 |
+
from aworld.output.base import StepOutput
|
21 |
+
from aworld.sandbox.base import Sandbox
|
22 |
+
|
23 |
+
from aworld.utils.common import convert_to_snake, replace_env_variables
|
24 |
+
|
25 |
+
INPUT = TypeVar('INPUT')
|
26 |
+
OUTPUT = TypeVar('OUTPUT')
|
27 |
+
|
28 |
+
|
29 |
+
def is_agent_by_name(name: str) -> bool:
|
30 |
+
return name in AgentFactory
|
31 |
+
|
32 |
+
|
33 |
+
def is_agent(policy: ActionModel) -> bool:
|
34 |
+
return is_agent_by_name(policy.tool_name) or (not policy.tool_name and not policy.action_name)
|
35 |
+
|
36 |
+
|
37 |
+
class AgentStatus:
|
38 |
+
# Init status
|
39 |
+
START = 0
|
40 |
+
# Agent is running for monitor or collection
|
41 |
+
RUNNING = 1
|
42 |
+
# Agent reject the task
|
43 |
+
REJECT = 2
|
44 |
+
# Agent is idle
|
45 |
+
IDLE = 3
|
46 |
+
# Agent meets exception
|
47 |
+
ERROR = 4
|
48 |
+
# End of one agent step
|
49 |
+
DONE = 5
|
50 |
+
# End of one task step
|
51 |
+
FINISHED = 6
|
52 |
+
|
53 |
+
|
54 |
+
class AgentResult(BaseModel):
|
55 |
+
current_state: Any
|
56 |
+
actions: List[ActionModel]
|
57 |
+
is_call_tool: bool = True
|
58 |
+
|
59 |
+
|
60 |
+
class MemoryModel(BaseModel):
|
61 |
+
# TODO: memory module
|
62 |
+
message: Dict = {}
|
63 |
+
tool_calls: Any = None
|
64 |
+
content: Any = None
|
65 |
+
|
66 |
+
|
67 |
+
class BaseAgent(Generic[INPUT, OUTPUT]):
|
68 |
+
__metaclass__ = abc.ABCMeta
|
69 |
+
|
70 |
+
def __init__(self,
|
71 |
+
conf: Union[Dict[str, Any], ConfigDict, AgentConfig],
|
72 |
+
name: str,
|
73 |
+
desc: str = None,
|
74 |
+
agent_id: str = None,
|
75 |
+
*,
|
76 |
+
tool_names: List[str] = [],
|
77 |
+
agent_names: List[str] = [],
|
78 |
+
mcp_servers: List[str] = [],
|
79 |
+
mcp_config: Dict[str, Any] = {},
|
80 |
+
feedback_tool_result: bool = False,
|
81 |
+
sandbox: Sandbox = None,
|
82 |
+
**kwargs):
|
83 |
+
"""Base agent init.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
conf: Agent config for internal processes.
|
87 |
+
name: Agent name as identifier.
|
88 |
+
desc: Agent description as tool description.
|
89 |
+
tool_names: Tool names of local that agents can use.
|
90 |
+
agent_names: Agents as tool name list.
|
91 |
+
mcp_servers: Mcp names that the agent can use.
|
92 |
+
mcp_config: Mcp config for mcp servers.
|
93 |
+
feedback_tool_result: Whether feedback on the results of the tool.
|
94 |
+
Agent1 uses tool1 when the value is True, it does not go to the other agent after obtaining the result of tool1.
|
95 |
+
Instead, Agent1 uses the tool's result and makes a decision again.
|
96 |
+
sandbox: Sandbox instance for tool execution, advanced usage.
|
97 |
+
"""
|
98 |
+
self.conf = conf
|
99 |
+
if isinstance(conf, ConfigDict):
|
100 |
+
pass
|
101 |
+
elif isinstance(conf, Dict):
|
102 |
+
self.conf = ConfigDict(conf)
|
103 |
+
elif isinstance(conf, AgentConfig):
|
104 |
+
# To add flexibility
|
105 |
+
self.conf = ConfigDict(conf.model_dump())
|
106 |
+
else:
|
107 |
+
logger.warning(f"Unknown conf type: {type(conf)}")
|
108 |
+
|
109 |
+
self._name = name if name else convert_to_snake(self.__class__.__name__)
|
110 |
+
self._desc = desc if desc else self._name
|
111 |
+
# Unique flag based agent name
|
112 |
+
self._id = agent_id if agent_id else f"{self._name}---uuid{uuid.uuid1().hex[0:6]}uuid"
|
113 |
+
self.task = None
|
114 |
+
# An agent can use the tool list
|
115 |
+
self.tool_names: List[str] = tool_names
|
116 |
+
human_tools = self.conf.get("human_tools", [])
|
117 |
+
for tool in human_tools:
|
118 |
+
self.tool_names.append(tool)
|
119 |
+
# An agent can delegate tasks to other agent
|
120 |
+
self.handoffs: List[str] = agent_names
|
121 |
+
# Supported MCP server
|
122 |
+
self.mcp_servers: List[str] = mcp_servers
|
123 |
+
self.mcp_config: Dict[str, Any] = replace_env_variables(mcp_config)
|
124 |
+
self.trajectory: List[Tuple[INPUT, Dict[str, Any], AgentResult]] = []
|
125 |
+
# all tools that the agent can use. note: string name/id only
|
126 |
+
self.tools = []
|
127 |
+
self.context = None
|
128 |
+
self.agent_context = None
|
129 |
+
self.state = AgentStatus.START
|
130 |
+
self._finished = True
|
131 |
+
self.hooks: Dict[str, List[str]] = {}
|
132 |
+
self.feedback_tool_result = feedback_tool_result
|
133 |
+
self.sandbox = sandbox or Sandbox(
|
134 |
+
mcp_servers=self.mcp_servers, mcp_config=self.mcp_config)
|
135 |
+
|
136 |
+
def _init_context(self, context: Context):
|
137 |
+
self.context = context
|
138 |
+
self.agent_context = AgentContext(
|
139 |
+
agent_id=self.id(),
|
140 |
+
agent_name=self.name(),
|
141 |
+
agent_desc=self.desc(),
|
142 |
+
tool_names=self.tool_names,
|
143 |
+
context=self.context,
|
144 |
+
parent_state=self.context.state # Pass Context's state as parent state
|
145 |
+
)
|
146 |
+
|
147 |
+
def id(self) -> str:
|
148 |
+
return self._id
|
149 |
+
|
150 |
+
def name(self):
|
151 |
+
return self._name
|
152 |
+
|
153 |
+
def desc(self) -> str:
|
154 |
+
return self._desc
|
155 |
+
|
156 |
+
def run(self, message: Message, **kwargs) -> Message:
|
157 |
+
self._init_context(message.context)
|
158 |
+
observation = message.payload
|
159 |
+
with trace.span(self._name, run_type=trace.RunType.AGNET) as agent_span:
|
160 |
+
self.pre_run()
|
161 |
+
result = self.policy(observation, **kwargs)
|
162 |
+
final_result = self.post_run(result, observation)
|
163 |
+
if final_result:
|
164 |
+
final_result.context = self.context
|
165 |
+
final_result.session_id = self.context.session_id
|
166 |
+
return final_result
|
167 |
+
|
168 |
+
async def async_run(self, message: Message, **kwargs) -> Message:
|
169 |
+
self._init_context(message.context)
|
170 |
+
observation = message.payload
|
171 |
+
if eventbus is not None:
|
172 |
+
await eventbus.publish(Message(
|
173 |
+
category=Constants.OUTPUT,
|
174 |
+
payload=StepOutput.build_start_output(name=f"{self.id()}", alias_name=self.name(), step_num=0),
|
175 |
+
sender=self.id(),
|
176 |
+
session_id=self.context.session_id
|
177 |
+
))
|
178 |
+
with trace.span(self._name, run_type=trace.RunType.AGNET) as agent_span:
|
179 |
+
await self.async_pre_run()
|
180 |
+
result = await self.async_policy(observation, **kwargs)
|
181 |
+
final_result = await self.async_post_run(result, observation)
|
182 |
+
if final_result:
|
183 |
+
final_result.context = self.context
|
184 |
+
final_result.session_id = self.context.session_id
|
185 |
+
return final_result
|
186 |
+
|
187 |
+
@abc.abstractmethod
|
188 |
+
def policy(self, observation: INPUT, info: Dict[str, Any] = None, **kwargs) -> OUTPUT:
|
189 |
+
"""The strategy of an agent can be to decide which tools to use in the environment, or to delegate tasks to other agents.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
observation: The state observed from tools in the environment.
|
193 |
+
info: Extended information is used to assist the agent to decide a policy.
|
194 |
+
"""
|
195 |
+
|
196 |
+
@abc.abstractmethod
|
197 |
+
async def async_policy(self, observation: INPUT, info: Dict[str, Any] = None, **kwargs) -> OUTPUT:
|
198 |
+
"""The strategy of an agent can be to decide which tools to use in the environment, or to delegate tasks to other agents.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
observation: The state observed from tools in the environment.
|
202 |
+
info: Extended information is used to assist the agent to decide a policy.
|
203 |
+
"""
|
204 |
+
|
205 |
+
def reset(self, options: Dict[str, Any]):
|
206 |
+
"""Clean agent instance state and reset."""
|
207 |
+
if options is None:
|
208 |
+
options = {}
|
209 |
+
self.task = options.get("task")
|
210 |
+
self.tool_names = options.get("tool_names", [])
|
211 |
+
self.handoffs = options.get("agent_names", [])
|
212 |
+
self.mcp_servers = options.get("mcp_servers", [])
|
213 |
+
self.tools = []
|
214 |
+
self.trajectory = []
|
215 |
+
self._finished = True
|
216 |
+
|
217 |
+
async def async_reset(self, options: Dict[str, Any]):
|
218 |
+
"""Clean agent instance state and reset."""
|
219 |
+
self.task = options.get("task")
|
220 |
+
|
221 |
+
@property
|
222 |
+
def finished(self) -> bool:
|
223 |
+
"""Agent finished the thing, default is True."""
|
224 |
+
return self._finished
|
225 |
+
|
226 |
+
def pre_run(self):
|
227 |
+
pass
|
228 |
+
|
229 |
+
def post_run(self, policy_result: OUTPUT, input: INPUT) -> Message:
|
230 |
+
return policy_result
|
231 |
+
|
232 |
+
async def async_pre_run(self):
|
233 |
+
pass
|
234 |
+
|
235 |
+
async def async_post_run(self, policy_result: OUTPUT, input: INPUT) -> Message:
|
236 |
+
return policy_result
|
237 |
+
|
238 |
+
|
239 |
+
class AgentManager(Factory):
|
240 |
+
def __init__(self, type_name: str = None):
|
241 |
+
super(AgentManager, self).__init__(type_name)
|
242 |
+
self._agent_conf = {}
|
243 |
+
self._agent_instance = {}
|
244 |
+
|
245 |
+
def __call__(self, name: str = None, *args, **kwargs):
|
246 |
+
if name is None:
|
247 |
+
return self
|
248 |
+
|
249 |
+
conf = self._agent_conf.get(name)
|
250 |
+
if not conf:
|
251 |
+
logger.warning(f"{name} not find conf in agent factory")
|
252 |
+
conf = dict()
|
253 |
+
elif isinstance(conf, BaseModel):
|
254 |
+
conf = conf.model_dump()
|
255 |
+
|
256 |
+
user_conf = kwargs.pop('conf', None)
|
257 |
+
if user_conf:
|
258 |
+
if isinstance(user_conf, BaseModel):
|
259 |
+
conf.update(user_conf.model_dump())
|
260 |
+
elif isinstance(user_conf, dict):
|
261 |
+
conf.update(user_conf)
|
262 |
+
else:
|
263 |
+
logger.warning(
|
264 |
+
f"Unknown conf type: {type(user_conf)}, ignored!")
|
265 |
+
|
266 |
+
conf['name'] = name
|
267 |
+
conf = ConfigDict(conf)
|
268 |
+
if name in self._cls:
|
269 |
+
agent = self._cls[name](conf=conf, **kwargs)
|
270 |
+
self._agent_instance[name] = agent
|
271 |
+
else:
|
272 |
+
raise ValueError(f"Can not find {name} agent!")
|
273 |
+
return agent
|
274 |
+
|
275 |
+
def desc(self, name: str) -> str:
|
276 |
+
if self._agent_instance.get(name, None) and self._agent_instance[name].desc:
|
277 |
+
return self._agent_instance[name].desc
|
278 |
+
return self._desc.get(name, "")
|
279 |
+
|
280 |
+
def agent_instance(self, name: str) -> BaseAgent | None:
|
281 |
+
if self._agent_instance.get(name, None):
|
282 |
+
return self._agent_instance[name]
|
283 |
+
return None
|
284 |
+
|
285 |
+
def register(self, name: str, desc: str, conf_file_name: str = None, **kwargs):
|
286 |
+
"""Register a tool to tool factory.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
name: Tool name
|
290 |
+
desc: Tool description
|
291 |
+
supported_action: Tool abilities
|
292 |
+
conf_file_name: Default tool config
|
293 |
+
"""
|
294 |
+
res = super(AgentManager, self).register(name, desc, **kwargs)
|
295 |
+
conf_file_name = conf_file_name if conf_file_name else f"{name}.yaml"
|
296 |
+
conf = load_config(conf_file_name, kwargs.get("dir"))
|
297 |
+
if not conf:
|
298 |
+
logger.warning(f"{conf_file_name} not find, will use default")
|
299 |
+
# use general tool config
|
300 |
+
conf = AgentConfig().model_dump()
|
301 |
+
self._agent_conf[name] = conf
|
302 |
+
return res
|
303 |
+
|
304 |
+
|
305 |
+
AgentFactory = AgentManager("agent_type")
|
aworld/core/agent/swarm.py
ADDED
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Copyright (c) 2025 inclusionAI.
|
3 |
+
import abc
|
4 |
+
import json
|
5 |
+
from enum import Enum
|
6 |
+
from typing import Dict, List, Any, Callable, Optional, Tuple
|
7 |
+
|
8 |
+
from aworld.agents.parallel_llm_agent import ParallelizableAgent
|
9 |
+
from aworld.agents.serial_llm_agent import SerialableAgent
|
10 |
+
from aworld.core.agent.agent_desc import agent_handoffs_desc
|
11 |
+
from aworld.core.agent.base import AgentFactory, BaseAgent
|
12 |
+
from aworld.core.common import ActionModel, Observation
|
13 |
+
from aworld.core.context.base import Context
|
14 |
+
from aworld.core.exceptions import AworldException
|
15 |
+
from aworld.logs.util import logger
|
16 |
+
from aworld.utils.common import new_instance, convert_to_subclass
|
17 |
+
|
18 |
+
|
19 |
+
class GraphBuildType(Enum):
|
20 |
+
WORKFLOW = "workflow"
|
21 |
+
HANDOFF = "handoff"
|
22 |
+
TEAM = "team"
|
23 |
+
|
24 |
+
|
25 |
+
class Swarm(object):
|
26 |
+
"""Swarm is the multi-agent topology of AWorld, a collection of autonomous agents working together to
|
27 |
+
solve complex problems through collaboration or competition.
|
28 |
+
|
29 |
+
Swarm supports the key paradigms of workflow and handoff, and it satisfies the construction of various
|
30 |
+
agent graphs, including DAG and DCG, such as star, tree, mesh, ring, and hybrid topology.
|
31 |
+
"""
|
32 |
+
|
33 |
+
def __init__(self,
|
34 |
+
*args, # agent
|
35 |
+
root_agent: BaseAgent = None,
|
36 |
+
max_steps: int = 0,
|
37 |
+
register_agents: List[BaseAgent] = [],
|
38 |
+
build_type: GraphBuildType = GraphBuildType.WORKFLOW,
|
39 |
+
builder_cls: str = None,
|
40 |
+
event_driven: bool = True):
|
41 |
+
self._communicate_agent = root_agent
|
42 |
+
if root_agent and root_agent not in args:
|
43 |
+
self.agent_list: List[BaseAgent] = [root_agent] + list(args)
|
44 |
+
else:
|
45 |
+
self.agent_list: List[BaseAgent] = list(args)
|
46 |
+
|
47 |
+
self.setting_build_type(build_type)
|
48 |
+
self.max_steps = max_steps
|
49 |
+
self._cur_step = 0
|
50 |
+
self._event_driven = event_driven
|
51 |
+
self.build_type = build_type.value
|
52 |
+
if builder_cls:
|
53 |
+
self.builder = new_instance(builder_cls, self)
|
54 |
+
else:
|
55 |
+
self.builder = BUILD_CLS.get(self.build_type)(self.agent_list, register_agents, max_steps)
|
56 |
+
|
57 |
+
self.agent_graph: AgentGraph = None
|
58 |
+
|
59 |
+
# global tools
|
60 |
+
self.tools = []
|
61 |
+
self.task = ''
|
62 |
+
self.initialized: bool = False
|
63 |
+
self._finished: bool = False
|
64 |
+
|
65 |
+
def setting_build_type(self, build_type: GraphBuildType):
|
66 |
+
all_pair = True
|
67 |
+
for agent in self.agent_list:
|
68 |
+
if isinstance(agent, (list, tuple)):
|
69 |
+
if len(agent) != 2:
|
70 |
+
all_pair = False
|
71 |
+
elif isinstance(agent, BaseAgent):
|
72 |
+
all_pair = False
|
73 |
+
else:
|
74 |
+
raise AworldException(f"Unknown type {type(agent)}, supported list, tuple, Agent only.")
|
75 |
+
|
76 |
+
# team and workflow support mixing individual agents and agent lists.
|
77 |
+
if build_type == GraphBuildType.HANDOFF and not all_pair:
|
78 |
+
raise AworldException('The type of `handoff` requires all pairs to appear.')
|
79 |
+
|
80 |
+
for agent in self.agent_list:
|
81 |
+
if isinstance(agent, BaseAgent):
|
82 |
+
agent = [agent]
|
83 |
+
for a in agent:
|
84 |
+
if a and a.event_driven:
|
85 |
+
self._event_driven = True
|
86 |
+
break
|
87 |
+
|
88 |
+
def reset(self, content: Any, context: Context = None, tools: List[str] = []):
|
89 |
+
"""Resets the initial internal state, and init supported tools in agent in swarm.
|
90 |
+
|
91 |
+
Args:
|
92 |
+
tools: Tool names that all agents in the swarm can use.
|
93 |
+
"""
|
94 |
+
# can use the tools in the agents in the swarm as a global
|
95 |
+
if self.initialized:
|
96 |
+
logger.warning(f"swarm {self} already init")
|
97 |
+
return
|
98 |
+
|
99 |
+
self.tools = tools
|
100 |
+
# origin task
|
101 |
+
self.task = content
|
102 |
+
|
103 |
+
# build graph
|
104 |
+
agent_graph: AgentGraph = self.builder.build()
|
105 |
+
|
106 |
+
if not agent_graph.agents:
|
107 |
+
logger.warning("No valid agent in swarm.")
|
108 |
+
return
|
109 |
+
|
110 |
+
agent_graph.topological_sequence()
|
111 |
+
if self.build_type == GraphBuildType.TEAM.value:
|
112 |
+
agent_graph.ordered_agents.clear()
|
113 |
+
agent_graph.ordered_agents.append(agent_graph.root_agent)
|
114 |
+
|
115 |
+
# Agent that communicate with the outside world, the default is the first if the root agent is None.
|
116 |
+
if not self._communicate_agent:
|
117 |
+
self._communicate_agent = agent_graph.ordered_agents[0]
|
118 |
+
self.cur_agent = self.communicate_agent
|
119 |
+
self.agent_graph = agent_graph
|
120 |
+
|
121 |
+
if context is None:
|
122 |
+
context = Context.instance()
|
123 |
+
|
124 |
+
for agent in agent_graph.agents.values():
|
125 |
+
agent.event_driven = self.event_driven
|
126 |
+
if hasattr(agent, 'need_reset') and agent.need_reset:
|
127 |
+
agent.context = context
|
128 |
+
agent.reset({"task": content,
|
129 |
+
"tool_names": agent.tool_names,
|
130 |
+
"agent_names": agent.handoffs,
|
131 |
+
"mcp_servers": agent.mcp_servers})
|
132 |
+
# global tools
|
133 |
+
agent.tool_names.extend(self.tools)
|
134 |
+
|
135 |
+
self.cur_step = 1
|
136 |
+
self.initialized = True
|
137 |
+
|
138 |
+
def find_agents_by_prefix(self, name, find_all=False):
|
139 |
+
"""Fild the agent list by the prefix name.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
name: The agent prefix name.
|
143 |
+
find_all: Find the total agents or the first match agent.
|
144 |
+
"""
|
145 |
+
import re
|
146 |
+
|
147 |
+
res = []
|
148 |
+
for k, agent in self.agents.items():
|
149 |
+
val = re.split(r"---uuid\w{6}uuid", k)[0]
|
150 |
+
if name == val:
|
151 |
+
res.append(agent)
|
152 |
+
if not find_all:
|
153 |
+
return res
|
154 |
+
return res
|
155 |
+
|
156 |
+
def _check(self):
|
157 |
+
if not self.initialized:
|
158 |
+
self.reset('')
|
159 |
+
|
160 |
+
def handoffs_desc(self, agent_name: str = None, use_all: bool = False):
|
161 |
+
"""Get agent description by name for handoffs.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
agent_name: Agent unique name.
|
165 |
+
Returns:
|
166 |
+
Description of agent dict.
|
167 |
+
"""
|
168 |
+
self._check()
|
169 |
+
agent: BaseAgent = self.agents.get(agent_name, None)
|
170 |
+
return agent_handoffs_desc(agent, use_all)
|
171 |
+
|
172 |
+
def action_to_observation(self, policy: List[ActionModel], observation: List[Observation], strategy: str = None):
|
173 |
+
"""Based on the strategy, transform the agent's policy into an observation, the case of the agent as a tool.
|
174 |
+
|
175 |
+
Args:
|
176 |
+
policy: Agent policy based some messages.
|
177 |
+
observation: History of the current observable state in the environment.
|
178 |
+
strategy: Transform strategy, default is None. enum?
|
179 |
+
"""
|
180 |
+
self._check()
|
181 |
+
|
182 |
+
if not policy:
|
183 |
+
logger.warning("no agent policy, will return origin observation.")
|
184 |
+
# get the latest one
|
185 |
+
if not observation:
|
186 |
+
raise RuntimeError("no observation and policy to transform in swarm, please check your params.")
|
187 |
+
return observation[-1]
|
188 |
+
|
189 |
+
if not strategy:
|
190 |
+
# default use the first policy
|
191 |
+
policy_info = policy[0].policy_info
|
192 |
+
|
193 |
+
if not observation:
|
194 |
+
res = Observation(content=policy_info)
|
195 |
+
else:
|
196 |
+
res = observation[-1]
|
197 |
+
if not res.content:
|
198 |
+
res.content = policy_info or ""
|
199 |
+
|
200 |
+
return res
|
201 |
+
else:
|
202 |
+
logger.warning(f"{strategy} not supported now.")
|
203 |
+
|
204 |
+
def supported_tools(self):
|
205 |
+
"""Tool names that can be used by all agents in Swarm."""
|
206 |
+
self._check()
|
207 |
+
return self.tools
|
208 |
+
|
209 |
+
@property
|
210 |
+
def has_cycle(self):
|
211 |
+
self._check()
|
212 |
+
return self.agent_graph.has_cycle()
|
213 |
+
|
214 |
+
@property
|
215 |
+
def agents(self):
|
216 |
+
self._check()
|
217 |
+
return self.agent_graph.agents
|
218 |
+
|
219 |
+
@property
|
220 |
+
def ordered_agents(self):
|
221 |
+
self._check()
|
222 |
+
return self.agent_graph.ordered_agents
|
223 |
+
|
224 |
+
@property
|
225 |
+
def communicate_agent(self):
|
226 |
+
return self._communicate_agent
|
227 |
+
|
228 |
+
@communicate_agent.setter
|
229 |
+
def communicate_agent(self, agent: BaseAgent):
|
230 |
+
self._communicate_agent = agent
|
231 |
+
|
232 |
+
@property
|
233 |
+
def event_driven(self):
|
234 |
+
return self._event_driven
|
235 |
+
|
236 |
+
@event_driven.setter
|
237 |
+
def event_driven(self, event_driven):
|
238 |
+
self._event_driven = event_driven
|
239 |
+
|
240 |
+
@property
|
241 |
+
def cur_step(self) -> int:
|
242 |
+
return self._cur_step
|
243 |
+
|
244 |
+
@cur_step.setter
|
245 |
+
def cur_step(self, step):
|
246 |
+
self._cur_step = step
|
247 |
+
|
248 |
+
@property
|
249 |
+
def finished(self) -> bool:
|
250 |
+
"""Need all agents in a finished state."""
|
251 |
+
self._check()
|
252 |
+
if not self._finished:
|
253 |
+
self._finished = all([agent.finished for _, agent in self.agents.items()])
|
254 |
+
return self._finished
|
255 |
+
|
256 |
+
@finished.setter
|
257 |
+
def finished(self, finished):
|
258 |
+
self._finished = finished
|
259 |
+
|
260 |
+
|
261 |
+
class WorkflowSwarm(Swarm):
|
262 |
+
def __init__(self,
|
263 |
+
*args, # agent
|
264 |
+
root_agent: BaseAgent = None,
|
265 |
+
max_steps: int = 0,
|
266 |
+
register_agents: List[BaseAgent] = [],
|
267 |
+
builder_cls: str = None,
|
268 |
+
event_driven: bool = True):
|
269 |
+
super().__init__(*args,
|
270 |
+
root_agent=root_agent,
|
271 |
+
max_steps=max_steps,
|
272 |
+
register_agents=register_agents,
|
273 |
+
build_type=GraphBuildType.WORKFLOW,
|
274 |
+
builder_cls=builder_cls,
|
275 |
+
event_driven=event_driven)
|
276 |
+
|
277 |
+
|
278 |
+
class TeamSwarm(Swarm):
|
279 |
+
def __init__(self,
|
280 |
+
*args, # agent
|
281 |
+
root_agent: BaseAgent = None,
|
282 |
+
max_steps: int = 0,
|
283 |
+
register_agents: List[BaseAgent] = [],
|
284 |
+
builder_cls: str = None,
|
285 |
+
event_driven: bool = True):
|
286 |
+
super().__init__(*args,
|
287 |
+
root_agent=root_agent,
|
288 |
+
max_steps=max_steps,
|
289 |
+
register_agents=register_agents,
|
290 |
+
build_type=GraphBuildType.TEAM,
|
291 |
+
builder_cls=builder_cls,
|
292 |
+
event_driven=event_driven)
|
293 |
+
|
294 |
+
|
295 |
+
class HandoffSwarm(Swarm):
|
296 |
+
def __init__(self,
|
297 |
+
*args, # agent
|
298 |
+
max_steps: int = 0,
|
299 |
+
register_agents: List[BaseAgent] = [],
|
300 |
+
builder_cls: str = None,
|
301 |
+
event_driven: bool = True):
|
302 |
+
super().__init__(*args,
|
303 |
+
max_steps=max_steps,
|
304 |
+
register_agents=register_agents,
|
305 |
+
build_type=GraphBuildType.HANDOFF,
|
306 |
+
builder_cls=builder_cls,
|
307 |
+
event_driven=event_driven)
|
308 |
+
|
309 |
+
|
310 |
+
class EdgeInfo:
|
311 |
+
def __init__(self,
|
312 |
+
clause: Optional[Callable[..., Any]] = None,
|
313 |
+
weight: float = 0.):
|
314 |
+
self.clause = clause
|
315 |
+
self.weight = weight
|
316 |
+
|
317 |
+
|
318 |
+
class AgentGraph:
|
319 |
+
"""The agent's graph is a directed graph, and can update the topology at runtime."""
|
320 |
+
|
321 |
+
def __init__(self,
|
322 |
+
ordered_agents: List[BaseAgent] = [],
|
323 |
+
agents: Dict[str, BaseAgent] = {},
|
324 |
+
predecessor: Dict[str, Dict[str, EdgeInfo]] = {},
|
325 |
+
successor: Dict[str, Dict[str, EdgeInfo]] = {}):
|
326 |
+
"""Agent graph init.
|
327 |
+
|
328 |
+
Args:
|
329 |
+
ordered_agents: Agents ordered.
|
330 |
+
agents: Agent nodes.
|
331 |
+
predecessor: The direct predecessor of the agent.
|
332 |
+
successor: The direct successor of the agent.
|
333 |
+
"""
|
334 |
+
self.ordered_agents = ordered_agents
|
335 |
+
self.agents = agents
|
336 |
+
self.predecessor = predecessor
|
337 |
+
self.successor = successor
|
338 |
+
self.first = True
|
339 |
+
self.root_agent = None
|
340 |
+
|
341 |
+
def topological_sequence(self) -> Tuple[List[str], bool]:
|
342 |
+
"""Obtain the agent sequence of topology, and be able to determine whether the topology has cycle during the process.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
Topological sequence and whether it is a cycle topology, False represents DAG, True represents DCG.
|
346 |
+
"""
|
347 |
+
in_degree = dict(filter(lambda k: k[1] > 0, self.in_degree().items()))
|
348 |
+
zero_list = [v[0] for v in list(filter(lambda k: k[1] == 0, self.in_degree().items()))]
|
349 |
+
|
350 |
+
res = []
|
351 |
+
while zero_list:
|
352 |
+
tmp = zero_list
|
353 |
+
zero_list = []
|
354 |
+
for agent_id in tmp:
|
355 |
+
if agent_id not in self.agents:
|
356 |
+
raise RuntimeError("Agent topology changed during iteration")
|
357 |
+
|
358 |
+
for key, _ in self.successor.get(agent_id).items():
|
359 |
+
try:
|
360 |
+
in_degree[key] -= 1
|
361 |
+
except KeyError as err:
|
362 |
+
raise RuntimeError("Agent topology changed during iteration")
|
363 |
+
|
364 |
+
if in_degree[key] == 0:
|
365 |
+
zero_list.append(key)
|
366 |
+
del in_degree[key]
|
367 |
+
res.append(tmp)
|
368 |
+
|
369 |
+
dcg = False
|
370 |
+
if in_degree:
|
371 |
+
logger.info("Agent topology contains cycle!")
|
372 |
+
# sequence may be incomplete
|
373 |
+
res.clear()
|
374 |
+
dcg = True
|
375 |
+
|
376 |
+
if not self.ordered_agents:
|
377 |
+
for agent_ids in res:
|
378 |
+
for agent_id in agent_ids:
|
379 |
+
self.ordered_agents.append(self.agents[agent_id])
|
380 |
+
return res, dcg
|
381 |
+
|
382 |
+
def has_cycle(self):
|
383 |
+
res, is_dcg = self.topological_sequence()
|
384 |
+
return is_dcg
|
385 |
+
|
386 |
+
def add_node(self, agent: BaseAgent):
|
387 |
+
if not agent:
|
388 |
+
raise AworldException("agent is None, can not build the graph.")
|
389 |
+
|
390 |
+
if self.first:
|
391 |
+
self.root_agent = agent
|
392 |
+
self.first = False
|
393 |
+
|
394 |
+
if agent.id() not in self.agents:
|
395 |
+
self.agents[agent.id()] = agent
|
396 |
+
self.successor[agent.id()] = {}
|
397 |
+
self.predecessor[agent.id()] = {}
|
398 |
+
else:
|
399 |
+
logger.info(f"{agent.id()} already in agent graph.")
|
400 |
+
|
401 |
+
def del_node(self, agent: BaseAgent):
|
402 |
+
if not agent or agent.id() not in self.agents:
|
403 |
+
return
|
404 |
+
|
405 |
+
self.ordered_agents.remove(agent)
|
406 |
+
del self.agents[agent.id()]
|
407 |
+
|
408 |
+
successor = self.successor.get(agent.id(), {})
|
409 |
+
for key, _ in successor.items():
|
410 |
+
del self.predecessor[key][agent.id()]
|
411 |
+
del self.successor[agent.id()]
|
412 |
+
|
413 |
+
for key, _ in self.predecessor.get(agent.id(), {}):
|
414 |
+
del self.successor[key][agent.id()]
|
415 |
+
del self.predecessor[agent.id()]
|
416 |
+
|
417 |
+
def add_edge(self, left_agent: BaseAgent, right_agent: BaseAgent, edge_info: EdgeInfo = EdgeInfo()):
|
418 |
+
"""Adding an edge between the left and the right agent means establishing the relationship
|
419 |
+
between these two agents.
|
420 |
+
|
421 |
+
Args:
|
422 |
+
left_agent: As the agent node of the predecessor node.
|
423 |
+
right_agent: As the agent node of the successor node.
|
424 |
+
edge_info: Edge info between the agents.
|
425 |
+
"""
|
426 |
+
if left_agent and left_agent.id() not in self.agents:
|
427 |
+
raise RuntimeError(f"{left_agent.id()} not in agents node.")
|
428 |
+
if right_agent and right_agent.id() not in self.agents:
|
429 |
+
raise RuntimeError(f"{right_agent.id()} not in agents node.")
|
430 |
+
|
431 |
+
if left_agent.id() not in self.successor:
|
432 |
+
self.successor[left_agent.id()] = {}
|
433 |
+
self.predecessor[left_agent.id()] = {}
|
434 |
+
|
435 |
+
if right_agent.id() not in self.successor:
|
436 |
+
self.successor[right_agent.id()] = {}
|
437 |
+
self.predecessor[right_agent.id()] = {}
|
438 |
+
|
439 |
+
self.successor[left_agent.id()][right_agent.id()] = edge_info
|
440 |
+
self.predecessor[right_agent.id()][left_agent.id()] = edge_info
|
441 |
+
|
442 |
+
def remove_edge(self, left_agent: BaseAgent, right_agent: BaseAgent):
|
443 |
+
"""Removing an edge between the left and the right agent means removing the relationship
|
444 |
+
between these two agents.
|
445 |
+
|
446 |
+
Args:
|
447 |
+
left_agent: As the agent node of the predecessor node.
|
448 |
+
right_agent: As the agent node of the successor node.
|
449 |
+
"""
|
450 |
+
if left_agent.id() in self.successor and right_agent.id() in self.successor[left_agent.id()]:
|
451 |
+
del self.successor[left_agent.id()][right_agent.id()]
|
452 |
+
if right_agent.id() in self.predecessor and left_agent.id() in self.successor[right_agent.id()]:
|
453 |
+
del self.predecessor[right_agent.id()][left_agent.id()]
|
454 |
+
|
455 |
+
def in_degree(self) -> Dict[str, int]:
|
456 |
+
"""In degree of the agent is the number of agents pointing to the agent."""
|
457 |
+
in_degree = {}
|
458 |
+
for k, _ in self.agents.items():
|
459 |
+
agents = self.predecessor[k]
|
460 |
+
in_degree[k] = len(agents.values())
|
461 |
+
return in_degree
|
462 |
+
|
463 |
+
def out_degree(self) -> Dict[str, int]:
|
464 |
+
"""Out degree of the agent is the number of agents pointing out of the agent."""
|
465 |
+
out_degree = {}
|
466 |
+
for k, _ in self.agents.items():
|
467 |
+
agents = self.successor[k]
|
468 |
+
out_degree[k] = len(agents.values())
|
469 |
+
return out_degree
|
470 |
+
|
471 |
+
def loop_agent(self,
|
472 |
+
agent: BaseAgent,
|
473 |
+
max_run_times: int,
|
474 |
+
loop_point: str = None,
|
475 |
+
loop_point_finder: Callable[..., Any] = None,
|
476 |
+
stop_func: Callable[..., Any] = None):
|
477 |
+
"""Loop execution of the flow.
|
478 |
+
|
479 |
+
Args:
|
480 |
+
agent: The agent.
|
481 |
+
max_run_times: Maximum number of loops.
|
482 |
+
loop_point: Loop point of the desired execution.
|
483 |
+
loop_point_finder: Strategy function for obtaining execution loop point.
|
484 |
+
stop_func: Termination function.
|
485 |
+
"""
|
486 |
+
from aworld.agents.loop_llm_agent import LoopableAgent
|
487 |
+
|
488 |
+
if agent not in self.ordered_agents:
|
489 |
+
raise RuntimeError(f"{agent.id()} not in swarm, agent instance {agent}.")
|
490 |
+
|
491 |
+
loop_agent: LoopableAgent = convert_to_subclass(agent, LoopableAgent)
|
492 |
+
# loop_agent: LoopableAgent = type(LoopableAgent)(agent)
|
493 |
+
loop_agent.max_run_times = max_run_times
|
494 |
+
loop_agent.loop_point = loop_point
|
495 |
+
loop_agent.loop_point_finder = loop_point_finder
|
496 |
+
loop_agent.stop_func = stop_func
|
497 |
+
|
498 |
+
idx = self.ordered_agents.index(agent)
|
499 |
+
self.ordered_agents[idx] = loop_agent
|
500 |
+
|
501 |
+
def parallel_agent(self,
|
502 |
+
agent: BaseAgent,
|
503 |
+
agents: List[BaseAgent],
|
504 |
+
aggregate_func: Callable[..., Any] = None):
|
505 |
+
"""Parallel execution of agents.
|
506 |
+
|
507 |
+
Args:
|
508 |
+
agent: The agent.
|
509 |
+
agents: Agents that require parallel execution.
|
510 |
+
aggregate_func: Aggregate strategy function.
|
511 |
+
"""
|
512 |
+
from aworld.agents.parallel_llm_agent import ParallelizableAgent
|
513 |
+
|
514 |
+
if agent not in self.ordered_agents:
|
515 |
+
raise RuntimeError(f"{agent.id()} not in swarm, agent instance {agent}.")
|
516 |
+
for agent in agents:
|
517 |
+
if agent not in self.ordered_agents:
|
518 |
+
raise RuntimeError(f"{agent.id()} not in swarm, agent instance {agent}.")
|
519 |
+
|
520 |
+
parallel_agent: ParallelizableAgent = convert_to_subclass(agent, ParallelizableAgent)
|
521 |
+
parallel_agent.agents = agents
|
522 |
+
parallel_agent.aggregate_func = aggregate_func
|
523 |
+
|
524 |
+
idx = self.ordered_agents.index(agent)
|
525 |
+
self.ordered_agents[idx] = parallel_agent
|
526 |
+
|
527 |
+
def save(self, filepath: str):
|
528 |
+
vals = {"agents": self.agents, "successor": self.successor, "predecessor": self.predecessor}
|
529 |
+
json.dumps(vals)
|
530 |
+
|
531 |
+
def load(self, filepath: str):
|
532 |
+
pass
|
533 |
+
|
534 |
+
|
535 |
+
class TopologyBuilder:
|
536 |
+
"""Multi-agent topology base builder."""
|
537 |
+
__metaclass__ = abc.ABCMeta
|
538 |
+
|
539 |
+
def __init__(self, agent_list: List[BaseAgent], register_agents: List[BaseAgent] = [], max_steps: int = 0):
|
540 |
+
self.agent_list = agent_list
|
541 |
+
self.max_steps = max_steps
|
542 |
+
|
543 |
+
for agent in register_agents:
|
544 |
+
TopologyBuilder.register_agent(agent)
|
545 |
+
|
546 |
+
@abc.abstractmethod
|
547 |
+
def build(self):
|
548 |
+
"""Build a multi-agent topology diagram using custom build strategies or syntax."""
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def register_agent(agent: BaseAgent):
|
552 |
+
if agent.id() not in AgentFactory:
|
553 |
+
AgentFactory._cls[agent.id()] = agent.__class__
|
554 |
+
AgentFactory._desc[agent.id()] = agent.desc()
|
555 |
+
AgentFactory._agent_conf[agent.id()] = agent.conf
|
556 |
+
AgentFactory._agent_instance[agent.id()] = agent
|
557 |
+
else:
|
558 |
+
if agent.id() not in AgentFactory._agent_instance:
|
559 |
+
AgentFactory._agent_instance[agent.id()] = agent
|
560 |
+
if agent.desc():
|
561 |
+
AgentFactory._desc[agent.id()] = agent.desc()
|
562 |
+
|
563 |
+
|
564 |
+
class WorkflowBuilder(TopologyBuilder):
|
565 |
+
"""Workflow mechanism, workflow is a deterministic process orchestration where each node must execute.
|
566 |
+
|
567 |
+
There are three forms supported by the workflow builder: single agent, tuple of paired agents, and agent list.
|
568 |
+
Examples:
|
569 |
+
>>> agent1 = Agent(name='agent1'); agent2 = Agent(name='agent2'); agent3 = Agent(name='agent3')
|
570 |
+
>>> agent4 = Agent(name='agent4'); agent5 = Agent(name='agent5'); agent6 = Agent(name='agent6')
|
571 |
+
>>> Swarm(agent1, [agent2, agent3], (agent2, agent4), (agent3, agent5), agent6)
|
572 |
+
|
573 |
+
The meaning of the topology is that after agent1 completes execution, agent2 and agent3 are executed in parallel,
|
574 |
+
then agent4 and agent5 are executed sequentially after agent2 and agent3, and agent6 is executed after completion.
|
575 |
+
"""
|
576 |
+
|
577 |
+
def build(self):
|
578 |
+
"""Built as workflow, different forms will be internally constructed as different agents,
|
579 |
+
such as ParallelizableAgent, SerialableAgent or LoopableAgent.
|
580 |
+
|
581 |
+
# TODO: Complete Graph Definition Capability
|
582 |
+
Returns:
|
583 |
+
Direct topology diagram (AgentGraph) of the agents.
|
584 |
+
"""
|
585 |
+
agent_graph = AgentGraph(ordered_agents=[], agents={}, successor={}, predecessor={})
|
586 |
+
valid_agents = []
|
587 |
+
for agent in self.agent_list:
|
588 |
+
if isinstance(agent, BaseAgent):
|
589 |
+
valid_agents.append(agent)
|
590 |
+
elif isinstance(agent, tuple):
|
591 |
+
serial_agent = SerialableAgent(name="_".join(agent), conf=agent[0].conf, agents=list(agent))
|
592 |
+
valid_agents.append(serial_agent)
|
593 |
+
elif isinstance(agent, list):
|
594 |
+
# list
|
595 |
+
parallel_agent = ParallelizableAgent(name="_".join(agent), conf=agent[0].conf, agents=agent)
|
596 |
+
valid_agents.append(parallel_agent)
|
597 |
+
else:
|
598 |
+
raise RuntimeError(f"agent in {agent} is not a agent or agent list, please check it.")
|
599 |
+
|
600 |
+
if not valid_agents:
|
601 |
+
raise RuntimeError(f"no valid agent in swarm to build execution graph.")
|
602 |
+
|
603 |
+
last_agent = None
|
604 |
+
for agent in valid_agents:
|
605 |
+
TopologyBuilder.register_agent(agent)
|
606 |
+
|
607 |
+
agent_graph.add_node(agent)
|
608 |
+
if last_agent:
|
609 |
+
agent_graph.add_edge(last_agent, agent)
|
610 |
+
last_agent = agent
|
611 |
+
return agent_graph
|
612 |
+
|
613 |
+
|
614 |
+
class HandoffBuilder(TopologyBuilder):
|
615 |
+
"""Handoff mechanism using agents as tools, but during the runtime,
|
616 |
+
the agent remains an independent entity with a state.
|
617 |
+
|
618 |
+
Handoffs builder only supports tuple of paired agents forms.
|
619 |
+
Examples:
|
620 |
+
>>> agent1 = Agent(name='agent1'); agent2 = Agent(name='agent2'); agent3 = Agent(name='agent3')
|
621 |
+
>>> agent4 = Agent(name='agent4'); agent5 = Agent(name='agent5'); agent6 = Agent(name='agent6')
|
622 |
+
>>> Swarm((agent1, agent2), (agent1, agent3), (agent2, agent3), build_type=GraphBuildType.HANDOFF)
|
623 |
+
"""
|
624 |
+
|
625 |
+
def build(self):
|
626 |
+
"""Build a graph in pairs, with the right agent serving as the tool on the left.
|
627 |
+
|
628 |
+
Using pure AI to drive the flow of the entire topology diagram, one agent's decision
|
629 |
+
hands off control to another. Agents may be fully connected or circular, depending
|
630 |
+
on the defined pairs of agents.
|
631 |
+
|
632 |
+
Returns:
|
633 |
+
Direct topology diagram (AgentGraph) of the agents.
|
634 |
+
"""
|
635 |
+
valid_agent_pair = []
|
636 |
+
for pair in self.agent_list:
|
637 |
+
if not isinstance(pair, (list, tuple)):
|
638 |
+
raise RuntimeError(f"{pair} is not a tuple or list value, please check it.")
|
639 |
+
elif len(pair) != 2:
|
640 |
+
raise RuntimeError(f"{pair} is not a pair, please check it.")
|
641 |
+
|
642 |
+
valid_agent_pair.append(pair)
|
643 |
+
|
644 |
+
if not valid_agent_pair:
|
645 |
+
raise RuntimeError(f"no valid agent pair to build execution graph.")
|
646 |
+
|
647 |
+
# agent handoffs graph build.
|
648 |
+
agent_graph = AgentGraph(ordered_agents=[], agents={}, successor={}, predecessor={})
|
649 |
+
for pair in valid_agent_pair:
|
650 |
+
TopologyBuilder.register_agent(pair[0])
|
651 |
+
TopologyBuilder.register_agent(pair[1])
|
652 |
+
|
653 |
+
# need feedback
|
654 |
+
pair[0].feedback_tool_result = True
|
655 |
+
pair[1].feedback_tool_result = True
|
656 |
+
|
657 |
+
agent_graph.add_node(pair[0])
|
658 |
+
agent_graph.add_node(pair[1])
|
659 |
+
agent_graph.add_edge(pair[0], pair[1])
|
660 |
+
|
661 |
+
# explicitly set handoffs in the agent
|
662 |
+
pair[0].handoffs.append(pair[1].id())
|
663 |
+
pair[1].handoffs.remove(pair[1].id())
|
664 |
+
return agent_graph
|
665 |
+
|
666 |
+
|
667 |
+
class TeamBuilder(TopologyBuilder):
|
668 |
+
"""Team mechanism requires a leadership agent, and other agents follow its command.
|
669 |
+
If there is interaction between agents other than the leadership agent, they need to explicitly
|
670 |
+
set `agent_names` themselves or use a tuple with two agents.
|
671 |
+
|
672 |
+
Team builder supported form of single agent, tuple of paired agents, and agent list, similar to workflow.
|
673 |
+
Examples:
|
674 |
+
>>> agent1 = Agent(name='agent1'); agent2 = Agent(name='agent2'); agent3 = Agent(name='agent3')
|
675 |
+
>>> agent4 = Agent(name='agent4'); agent5 = Agent(name='agent5'); agent6 = Agent(name='agent6')
|
676 |
+
>>> Swarm(agent1, agent2, agent3, (agent4, agent5), agent6, build_type=GraphBuildType.TEAM)
|
677 |
+
|
678 |
+
The topology means that agent1 is the leader agent, agent5 as a tool of agent4,
|
679 |
+
and agent2, agent3, agent6, agent4 are executors of agent1.
|
680 |
+
|
681 |
+
Using the `root_agent` parameter, will obtain the same topology as above.
|
682 |
+
>>> Swarm(agent2, agent3, (agent4, agent5), agent6, root_agent=agent1, build_type=GraphBuildType.TEAM)
|
683 |
+
>>> Swarm(agent1, agent2, agent3, (agent4, agent5), agent6, root_agent=agent1, build_type=GraphBuildType.TEAM)
|
684 |
+
"""
|
685 |
+
|
686 |
+
def build(self):
|
687 |
+
agent_graph = AgentGraph(ordered_agents=[], agents={}, successor={}, predecessor={})
|
688 |
+
valid_agents = []
|
689 |
+
root_agent = self.agent_list[0]
|
690 |
+
if isinstance(root_agent, tuple):
|
691 |
+
valid_agents.append(root_agent)
|
692 |
+
root_agent = root_agent[0]
|
693 |
+
agent_graph.add_node(root_agent)
|
694 |
+
root_agent.feedback_tool_result = True
|
695 |
+
|
696 |
+
single_agents = []
|
697 |
+
for agent in self.agent_list[1:]:
|
698 |
+
if isinstance(agent, BaseAgent):
|
699 |
+
single_agents.append(agent)
|
700 |
+
elif isinstance(agent, tuple):
|
701 |
+
valid_agents.append(agent)
|
702 |
+
elif isinstance(agent, list):
|
703 |
+
# list of agent can parallel
|
704 |
+
parallel_agent = ParallelizableAgent(name="_".join(agent), conf=agent[0].conf, agents=agent)
|
705 |
+
single_agents.append(parallel_agent)
|
706 |
+
else:
|
707 |
+
raise RuntimeError(f"agent in {agent} is not a agent or agent list, please check it.")
|
708 |
+
|
709 |
+
if not valid_agents and not single_agents:
|
710 |
+
raise RuntimeError(f"no valid agent in swarm to build execution graph.")
|
711 |
+
|
712 |
+
for agent in single_agents:
|
713 |
+
TopologyBuilder.register_agent(agent)
|
714 |
+
|
715 |
+
agent.feedback_tool_result = True
|
716 |
+
agent_graph.add_node(agent)
|
717 |
+
agent_graph.add_edge(root_agent, agent)
|
718 |
+
|
719 |
+
root_agent.handoffs.append(agent.id())
|
720 |
+
agent.handoffs.remove(agent.id())
|
721 |
+
|
722 |
+
for pair in valid_agents:
|
723 |
+
TopologyBuilder.register_agent(pair[0])
|
724 |
+
pair[0].feedback_tool_result = True
|
725 |
+
if len(pair) > 1:
|
726 |
+
TopologyBuilder.register_agent(pair[1])
|
727 |
+
pair[1].feedback_tool_result = True
|
728 |
+
|
729 |
+
agent_graph.add_node(pair[0])
|
730 |
+
agent_graph.add_node(pair[1])
|
731 |
+
if pair[0] != root_agent:
|
732 |
+
agent_graph.add_edge(root_agent, pair[0])
|
733 |
+
root_agent.handoffs.append(pair[0].id())
|
734 |
+
pair[0].handoffs.remove(pair[0].id())
|
735 |
+
else:
|
736 |
+
agent_graph.add_edge(root_agent, pair[1])
|
737 |
+
root_agent.handoffs.append(pair[1].id())
|
738 |
+
pair[1].handoffs.remove(pair[1].id())
|
739 |
+
return agent_graph
|
740 |
+
|
741 |
+
|
742 |
+
BUILD_CLS = {
|
743 |
+
GraphBuildType.WORKFLOW.value: WorkflowBuilder,
|
744 |
+
GraphBuildType.HANDOFF.value: HandoffBuilder,
|
745 |
+
GraphBuildType.TEAM.value: TeamBuilder,
|
746 |
+
}
|