Spaces:
Sleeping
Sleeping
Upload model_response_parse.py
Browse files
aworld/trace/instrumentation/uni_llmmodel/model_response_parse.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import json
|
3 |
+
import aworld.trace.instrumentation.semconv as semconv
|
4 |
+
from aworld.models.model_response import ModelResponse, ToolCall
|
5 |
+
from aworld.trace.base import Span
|
6 |
+
from aworld.trace.instrumentation.openai.inout_parse import should_trace_prompts, need_flatten_messages
|
7 |
+
from aworld.logs.util import logger
|
8 |
+
|
9 |
+
|
10 |
+
def parser_request_params(kwargs, instance: 'aworld.models.llm.LLMModel'):
|
11 |
+
attributes = {
|
12 |
+
semconv.GEN_AI_SYSTEM: instance.provider_name,
|
13 |
+
semconv.GEN_AI_REQUEST_MODEL: instance.provider.model_name,
|
14 |
+
semconv.GEN_AI_REQUEST_MAX_TOKENS: kwargs.get("max_tokens", ""),
|
15 |
+
semconv.GEN_AI_REQUEST_TEMPERATURE: kwargs.get("temperature", ""),
|
16 |
+
semconv.GEN_AI_REQUEST_STOP_SEQUENCES: str(kwargs.get("stop", [])),
|
17 |
+
semconv.GEN_AI_REQUEST_FREQUENCY_PENALTY: kwargs.get("frequency_penalty", ""),
|
18 |
+
semconv.GEN_AI_REQUEST_PRESENCE_PENALTY: kwargs.get("presence_penalty", ""),
|
19 |
+
semconv.GEN_AI_REQUEST_USER: kwargs.get("user", ""),
|
20 |
+
semconv.GEN_AI_REQUEST_EXTRA_HEADERS: kwargs.get("extra_headers", ""),
|
21 |
+
semconv.GEN_AI_REQUEST_STREAMING: kwargs.get("stream", ""),
|
22 |
+
semconv.GEN_AI_REQUEST_TOP_P: kwargs.get("top_p", ""),
|
23 |
+
semconv.GEN_AI_OPERATION_NAME: "chat"
|
24 |
+
}
|
25 |
+
return attributes
|
26 |
+
|
27 |
+
|
28 |
+
async def handle_request(span: Span, kwargs, instance):
|
29 |
+
if not span or not span.is_recording():
|
30 |
+
return
|
31 |
+
try:
|
32 |
+
attributes = parser_request_params(kwargs, instance)
|
33 |
+
if should_trace_prompts():
|
34 |
+
messages = kwargs.get("messages")
|
35 |
+
if need_flatten_messages():
|
36 |
+
attributes.update(parse_request_message(messages))
|
37 |
+
else:
|
38 |
+
attributes.update({
|
39 |
+
semconv.GEN_AI_PROMPT: covert_to_jsonstr(messages)
|
40 |
+
})
|
41 |
+
tools = kwargs.get("tools")
|
42 |
+
if tools:
|
43 |
+
if need_flatten_messages():
|
44 |
+
attributes.update(parse_prompt_tools(tools))
|
45 |
+
else:
|
46 |
+
attributes.update({
|
47 |
+
semconv.GEN_AI_PROMPT_TOOLS: covert_to_jsonstr(tools)
|
48 |
+
})
|
49 |
+
|
50 |
+
filterd_attri = {k: v for k, v in attributes.items()
|
51 |
+
if (v and v is not "")}
|
52 |
+
|
53 |
+
span.set_attributes(filterd_attri)
|
54 |
+
except Exception as e:
|
55 |
+
logger.warning(f"trace handle openai request error: {e}")
|
56 |
+
|
57 |
+
|
58 |
+
def get_common_attributes_from_response(instance: 'LLMModel', is_async, is_streaming):
|
59 |
+
operation = "acompletion" if is_async else "completion"
|
60 |
+
if is_streaming:
|
61 |
+
operation = "astream_completion" if is_async else "stream_completion"
|
62 |
+
return {
|
63 |
+
semconv.GEN_AI_SYSTEM: instance.provider_name,
|
64 |
+
semconv.GEN_AI_RESPONSE_MODEL: instance.provider.model_name,
|
65 |
+
semconv.GEN_AI_METHOD_NAME: operation,
|
66 |
+
semconv.GEN_AI_SERVER_ADDRESS: instance.provider.base_url
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def accumulate_stream_response(chunk: ModelResponse, complete_response: dict):
|
71 |
+
logger.info(f"accumulate_stream_response chunk= {chunk}")
|
72 |
+
pass
|
73 |
+
|
74 |
+
|
75 |
+
def record_stream_token_usage(complete_response, request_kwargs) -> tuple[int, int]:
|
76 |
+
'''
|
77 |
+
return (prompt_usage, completion_usage)
|
78 |
+
'''
|
79 |
+
logger.info(
|
80 |
+
f"record_stream_token_usage complete_response= {complete_response}")
|
81 |
+
return (0, 0)
|
82 |
+
|
83 |
+
|
84 |
+
def parse_request_message(messages):
|
85 |
+
'''
|
86 |
+
flatten request message to attributes
|
87 |
+
'''
|
88 |
+
attributes = {}
|
89 |
+
for i, msg in enumerate(messages):
|
90 |
+
prefix = f"{semconv.GEN_AI_PROMPT}.{i}"
|
91 |
+
attributes.update({f"{prefix}.role": msg.get("role")})
|
92 |
+
if msg.get("content"):
|
93 |
+
content = copy.deepcopy(msg.get("content"))
|
94 |
+
content = json.dumps(content, ensure_ascii=False)
|
95 |
+
attributes.update({f"{prefix}.content": content})
|
96 |
+
if msg.get("tool_call_id"):
|
97 |
+
attributes.update({
|
98 |
+
f"{prefix}.tool_call_id": msg.get("tool_call_id")})
|
99 |
+
tool_calls = msg.get("tool_calls")
|
100 |
+
# logger.info(f"input tool_calls={tool_calls}")
|
101 |
+
if tool_calls:
|
102 |
+
for i, tool_call in enumerate(tool_calls):
|
103 |
+
if isinstance(tool_call, dict):
|
104 |
+
function = tool_call.get('function')
|
105 |
+
attributes.update({
|
106 |
+
f"{prefix}.tool_calls.{i}.id": tool_call.get("id")})
|
107 |
+
attributes.update({
|
108 |
+
f"{prefix}.tool_calls.{i}.name": function.get("name")})
|
109 |
+
attributes.update({
|
110 |
+
f"{prefix}.tool_calls.{i}.arguments": function.get("arguments")})
|
111 |
+
elif isinstance(tool_call, ToolCall):
|
112 |
+
function = tool_call.function
|
113 |
+
attributes.update({
|
114 |
+
f"{prefix}.tool_calls.{i}.id": tool_call.id})
|
115 |
+
attributes.update({
|
116 |
+
f"{prefix}.tool_calls.{i}.name": function.name})
|
117 |
+
attributes.update({
|
118 |
+
f"{prefix}.tool_calls.{i}.arguments": function.arguments})
|
119 |
+
return attributes
|
120 |
+
|
121 |
+
|
122 |
+
def parse_prompt_tools(tools):
|
123 |
+
attributes = {}
|
124 |
+
for i, tool in enumerate(tools):
|
125 |
+
prefix = f"{semconv.GEN_AI_PROMPT_TOOLS}.{i}"
|
126 |
+
if isinstance(tool, dict):
|
127 |
+
tool_type = tool.get("type")
|
128 |
+
attributes.update({
|
129 |
+
f"{prefix}.type": tool_type})
|
130 |
+
if tool.get(tool_type):
|
131 |
+
attributes.update({
|
132 |
+
f"{prefix}.name": tool.get(tool_type).get("name")})
|
133 |
+
return attributes
|
134 |
+
|
135 |
+
|
136 |
+
def parse_response_message(tool_calls) -> dict:
|
137 |
+
attributes = {}
|
138 |
+
prefix = semconv.GEN_AI_COMPLETION_TOOL_CALLS
|
139 |
+
if tool_calls:
|
140 |
+
if need_flatten_messages():
|
141 |
+
for i, tool_call in enumerate(tool_calls):
|
142 |
+
function = tool_call.get("function")
|
143 |
+
attributes.update(
|
144 |
+
{f"{prefix}.{i}.id": tool_call.get("id")})
|
145 |
+
attributes.update(
|
146 |
+
{f"{prefix}.{i}.name": function.get("name")})
|
147 |
+
attributes.update(
|
148 |
+
{f"{prefix}.{i}.arguments": function.get("arguments")})
|
149 |
+
else:
|
150 |
+
attributes.update({
|
151 |
+
prefix: covert_to_jsonstr(tool_calls)
|
152 |
+
})
|
153 |
+
return attributes
|
154 |
+
|
155 |
+
|
156 |
+
def response_to_dic(response: ModelResponse) -> dict:
|
157 |
+
logger.info(f"completion response= {response}")
|
158 |
+
return response.to_dict()
|
159 |
+
|
160 |
+
|
161 |
+
def covert_to_jsonstr(obj):
|
162 |
+
return json.dumps(_to_serializable(obj), ensure_ascii=False)
|
163 |
+
|
164 |
+
|
165 |
+
def _to_serializable(obj):
|
166 |
+
if isinstance(obj, dict):
|
167 |
+
return {k: _to_serializable(v) for k, v in obj.items()}
|
168 |
+
elif isinstance(obj, list):
|
169 |
+
return [_to_serializable(i) for i in obj]
|
170 |
+
elif hasattr(obj, "to_dict"):
|
171 |
+
return obj.to_dict()
|
172 |
+
elif hasattr(obj, "model_dump"):
|
173 |
+
return obj.model_dump()
|
174 |
+
elif hasattr(obj, "dict"):
|
175 |
+
return obj.dict()
|
176 |
+
else:
|
177 |
+
return obj
|