Spaces:
Sleeping
Sleeping
Upload mem0_memory.py
Browse files
aworld/memory/mem0/mem0_memory.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import traceback
|
| 4 |
+
from typing import Optional
|
| 5 |
+
|
| 6 |
+
from pydantic import BaseModel
|
| 7 |
+
|
| 8 |
+
from aworld.config import ConfigDict
|
| 9 |
+
from aworld.core.memory import MemoryStore, MemoryConfig, MemoryItem
|
| 10 |
+
from aworld.logs.util import logger
|
| 11 |
+
from aworld.memory.main import Memory
|
| 12 |
+
from aworld.models.llm import get_llm_model
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class Mem0Memory(Memory):
|
| 16 |
+
def __init__(self, memory_store: MemoryStore, config: MemoryConfig | None = None, **kwargs):
|
| 17 |
+
super().__init__(memory_store, config, **kwargs)
|
| 18 |
+
self.config = config
|
| 19 |
+
|
| 20 |
+
conf = ConfigDict(
|
| 21 |
+
llm_provider=config.llm_provider,
|
| 22 |
+
llm_model_name=os.getenv("MEM_LLM_MODEL_NAME") if os.getenv("MEM_LLM_MODEL_NAME") else os.getenv(
|
| 23 |
+
'LLM_MODEL_NAME'),
|
| 24 |
+
llm_temperature=os.getenv("MEM_LLM_TEMPERATURE") if os.getenv("MEM_LLM_TEMPERATURE") else 1.0,
|
| 25 |
+
llm_base_url=os.getenv("MEM_LLM_BASE_URL") if os.getenv("MEM_LLM_BASE_URL") else os.getenv('LLM_BASE_URL'),
|
| 26 |
+
llm_api_key=os.getenv("MEM_LLM_API_KEY") if os.getenv("MEM_LLM_API_KEY") else os.getenv('LLM_API_KEY')
|
| 27 |
+
)
|
| 28 |
+
self.config.llm_instance = get_llm_model(conf=conf, streaming=False)
|
| 29 |
+
|
| 30 |
+
# Check for required packages
|
| 31 |
+
try:
|
| 32 |
+
# also disable mem0's telemetry when ANONYMIZED_TELEMETRY=False
|
| 33 |
+
if os.getenv('ANONYMIZED_TELEMETRY', 'true').lower()[0] in 'fn0':
|
| 34 |
+
os.environ['MEM_TELEMETRY'] = 'False'
|
| 35 |
+
from mem0 import Memory as Mem0
|
| 36 |
+
except ImportError:
|
| 37 |
+
raise ImportError('mem0 is required when enable_memory=True. Please install it with `pip install mem0`.')
|
| 38 |
+
|
| 39 |
+
if self.config.embedder_provider == 'huggingface':
|
| 40 |
+
try:
|
| 41 |
+
# check that required package is installed if huggingface is used
|
| 42 |
+
from sentence_transformers import SentenceTransformer # noqa: F401
|
| 43 |
+
except ImportError:
|
| 44 |
+
raise ImportError(
|
| 45 |
+
'sentence_transformers is required when enable_memory=True and embedder_provider="huggingface". Please install it with `pip install sentence-transformers`.'
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Initialize Mem0 with the configuration
|
| 49 |
+
config_dict = self.config.full_config_dict
|
| 50 |
+
self.mem0 = Mem0.from_config(config_dict=self.config.full_config_dict)
|
| 51 |
+
self.memory_store = memory_store
|
| 52 |
+
|
| 53 |
+
def add(self, memory_item: MemoryItem, filters: dict = None):
|
| 54 |
+
# generate summary memory if needed
|
| 55 |
+
message_filters = {
|
| 56 |
+
"memory_type": "message"
|
| 57 |
+
}
|
| 58 |
+
if filters:
|
| 59 |
+
message_filters = {
|
| 60 |
+
"memory_type": "message",
|
| 61 |
+
"agent_id": memory_item.metadata.get("agent_id"),
|
| 62 |
+
"task_id": memory_item.metadata.get("task_id"),
|
| 63 |
+
"user_id": memory_item.metadata.get("user_id"),
|
| 64 |
+
"session_id": memory_item.metadata.get("session_id"),
|
| 65 |
+
}
|
| 66 |
+
if self._need_summary(memory_item, message_filters):
|
| 67 |
+
self.create_summary_memory(
|
| 68 |
+
agent_id=memory_item.metadata.get("agent_id"),
|
| 69 |
+
task_id=memory_item.metadata.get("task_id"),
|
| 70 |
+
user_id=memory_item.metadata.get("user_id"),
|
| 71 |
+
session_id=memory_item.metadata.get("session_id"),
|
| 72 |
+
filters=message_filters
|
| 73 |
+
)
|
| 74 |
+
self.memory_store.add(memory_item)
|
| 75 |
+
|
| 76 |
+
def _need_summary(self, memory_item, message_filters):
|
| 77 |
+
"""
|
| 78 |
+
Check if a summary is needed based on the current step.
|
| 79 |
+
1. If the number of messages is greater than the summary rounds.
|
| 80 |
+
2. If the message is a message and the content is greater than the summary single context length.
|
| 81 |
+
"""
|
| 82 |
+
return self.memory_store.total_rounds(message_filters) > self.config.summary_rounds or (
|
| 83 |
+
memory_item.memory_type == 'message' and len(
|
| 84 |
+
memory_item.content) >= self.config.summary_single_context_length)
|
| 85 |
+
|
| 86 |
+
def create_summary_memory(self, agent_id, task_id, user_id, session_id, filters: dict) -> None:
|
| 87 |
+
"""
|
| 88 |
+
Create a summary memory if needed based on the current step.
|
| 89 |
+
"""
|
| 90 |
+
logger.info(f'Creating summary memory, {filters}')
|
| 91 |
+
|
| 92 |
+
# Get all messages
|
| 93 |
+
all_messages = self.memory_store.get_all(filters=filters)
|
| 94 |
+
|
| 95 |
+
# Separate messages into those to keep as-is and those to process for memory
|
| 96 |
+
summary_messages = []
|
| 97 |
+
messages_to_process = []
|
| 98 |
+
|
| 99 |
+
for msg in all_messages:
|
| 100 |
+
if isinstance(msg, MemoryItem) and msg.memory_type in {'summary'}:
|
| 101 |
+
# Keep system and memory messages as they are
|
| 102 |
+
summary_messages.append(msg)
|
| 103 |
+
elif msg.memory_type in {'init'}:
|
| 104 |
+
messages_to_process.append(msg)
|
| 105 |
+
else:
|
| 106 |
+
if len(msg.content) > 0:
|
| 107 |
+
messages_to_process.append(msg)
|
| 108 |
+
if messages_to_process[-1].metadata.get("tool_calls"):
|
| 109 |
+
messages_to_process = messages_to_process[:-1]
|
| 110 |
+
# Need at least 1 message to create a meaningful summary
|
| 111 |
+
if len(messages_to_process) < 1:
|
| 112 |
+
logger.info('Not enough non-memory messages to summarize')
|
| 113 |
+
return
|
| 114 |
+
# Create a procedural memory
|
| 115 |
+
|
| 116 |
+
memory_content = self._create_summary_memory(messages_to_process)
|
| 117 |
+
|
| 118 |
+
if not memory_content:
|
| 119 |
+
logger.warning('Failed to create procedural memory')
|
| 120 |
+
return
|
| 121 |
+
|
| 122 |
+
# Add the summary message
|
| 123 |
+
summary_message = MemoryItem(content=memory_content, memory_type='summary', metadata={
|
| 124 |
+
"role": "user",
|
| 125 |
+
"agent_id": agent_id,
|
| 126 |
+
"session_id": session_id,
|
| 127 |
+
"task_id": task_id,
|
| 128 |
+
"user_id": user_id,
|
| 129 |
+
})
|
| 130 |
+
summary_messages.append(summary_message)
|
| 131 |
+
|
| 132 |
+
# Update the history
|
| 133 |
+
[self.memory_store.delete(m.id) for m in messages_to_process]
|
| 134 |
+
self.memory_store.add(summary_message)
|
| 135 |
+
|
| 136 |
+
logger.info(f'Messages consolidated: {len(messages_to_process)} messages converted to procedural memory')
|
| 137 |
+
|
| 138 |
+
def _create_summary_memory(self, messages: list[MemoryItem]) -> str | None:
|
| 139 |
+
|
| 140 |
+
parsed_messages = [{'role': message.metadata['role'], 'content': message.content if not message.metadata.get(
|
| 141 |
+
'tool_calls') else message.content + "\n\n" + self.__format_tool_call(message.metadata.get('tool_calls'))}
|
| 142 |
+
for message in
|
| 143 |
+
messages] # TODO add tool_call from metadata['tool_calls'] such as [{"id": "fc-7b66b01a-f125-44d5-9f32-5e3723384d8e", "type": "function", "function": {"name": "mcp__amap-amap-sse__maps_geo", "arguments": "{\"address\": \"\u676d\u5dde\", \"city\": \"\u676d\u5dde\"}"}}] append to content
|
| 144 |
+
try:
|
| 145 |
+
results = self.mem0.add(
|
| 146 |
+
messages=parsed_messages,
|
| 147 |
+
agent_id=messages[-1].metadata.get('agent_id'),
|
| 148 |
+
memory_type='procedural_memory'
|
| 149 |
+
)
|
| 150 |
+
if len(results.get('results', [])):
|
| 151 |
+
logger.info(f'creating summary memory result: {results}')
|
| 152 |
+
return results.get('results', [])[0].get('memory')
|
| 153 |
+
return None
|
| 154 |
+
except Exception as e:
|
| 155 |
+
logger.error(f'Error creating summary memory: {e}')
|
| 156 |
+
traceback.print_exc()
|
| 157 |
+
return None
|
| 158 |
+
|
| 159 |
+
def __format_tool_call(self, tool_calls):
|
| 160 |
+
return json.dumps(tool_calls, default=lambda o: o.model_dump_json() if isinstance(o, BaseModel) else str(o))
|
| 161 |
+
|
| 162 |
+
def update(self, memory_item: MemoryItem):
|
| 163 |
+
self.memory_store.update(memory_item)
|
| 164 |
+
|
| 165 |
+
def delete(self, memory_id):
|
| 166 |
+
self.memory_store.delete(memory_id)
|
| 167 |
+
|
| 168 |
+
def get(self, memory_id) -> Optional[MemoryItem]:
|
| 169 |
+
# self.memory_store.get(memory_id)
|
| 170 |
+
return self.memory_store.get(
|
| 171 |
+
memory_id,
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
def get_all(self, filters: dict = None) -> list[MemoryItem]:
|
| 175 |
+
return self.memory_store.get_all(
|
| 176 |
+
filters=filters,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
def get_last_n(self, last_rounds, add_first_message=True, filters: dict = None) -> list[MemoryItem]:
|
| 180 |
+
"""
|
| 181 |
+
Get last n memories.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
last_rounds (int): Number of memories to retrieve.
|
| 185 |
+
add_first_message (bool):
|
| 186 |
+
|
| 187 |
+
Returns:
|
| 188 |
+
list[MemoryItem]: List of latest memories.
|
| 189 |
+
"""
|
| 190 |
+
return self.memory_store.get_last_n(
|
| 191 |
+
last_rounds=last_rounds,
|
| 192 |
+
filters=filters,
|
| 193 |
+
)
|