Spaces:
Sleeping
Sleeping
Upload inout_parse.py
Browse files
aworld/trace/instrumentation/openai/inout_parse.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
import threading
|
4 |
+
import copy
|
5 |
+
import json
|
6 |
+
import openai
|
7 |
+
from importlib.metadata import version
|
8 |
+
from aworld.logs.util import logger
|
9 |
+
from aworld.trace.base import Span
|
10 |
+
from aworld.utils import import_package
|
11 |
+
import aworld.trace.instrumentation.semconv as semconv
|
12 |
+
|
13 |
+
_PYDANTIC_VERSION = version("pydantic")
|
14 |
+
|
15 |
+
|
16 |
+
def should_trace_prompts():
|
17 |
+
'''Determine whether it is necessary to record the message
|
18 |
+
'''
|
19 |
+
return (os.getenv("SHOULD_TRACE_PROMPTS") or "true").lower() == "true"
|
20 |
+
|
21 |
+
|
22 |
+
def need_flatten_messages():
|
23 |
+
'''Determine whether it is necessary to flatten the messages
|
24 |
+
'''
|
25 |
+
return (os.getenv("TRACE_FLATTEN_MESSAGES") or "false").lower() == "true"
|
26 |
+
|
27 |
+
|
28 |
+
def run_async(method):
|
29 |
+
try:
|
30 |
+
loop = asyncio.get_running_loop()
|
31 |
+
except RuntimeError:
|
32 |
+
loop = None
|
33 |
+
|
34 |
+
if loop and loop.is_running():
|
35 |
+
thread = threading.Thread(target=lambda: asyncio.run(method))
|
36 |
+
thread.start()
|
37 |
+
thread.join()
|
38 |
+
else:
|
39 |
+
asyncio.run(method)
|
40 |
+
|
41 |
+
|
42 |
+
async def handle_openai_request(span: Span, kwargs, instance):
|
43 |
+
if not span or not span.is_recording():
|
44 |
+
return
|
45 |
+
try:
|
46 |
+
attributes = parser_request_params(kwargs, instance)
|
47 |
+
if should_trace_prompts():
|
48 |
+
messages = kwargs.get("messages")
|
49 |
+
if need_flatten_messages():
|
50 |
+
attributes.update(parse_request_message(messages))
|
51 |
+
else:
|
52 |
+
attributes.update({
|
53 |
+
semconv.GEN_AI_PROMPT: str(messages),
|
54 |
+
})
|
55 |
+
span.set_attributes(attributes)
|
56 |
+
except ValueError as e:
|
57 |
+
logger.warning(f"trace handle openai request error: {e}")
|
58 |
+
|
59 |
+
|
60 |
+
def parser_request_params(kwargs, instance):
|
61 |
+
attributes = {
|
62 |
+
semconv.GEN_AI_SYSTEM: "OpenAI",
|
63 |
+
semconv.GEN_AI_REQUEST_MODEL: kwargs.get("model", ""),
|
64 |
+
semconv.GEN_AI_REQUEST_MAX_TOKENS: kwargs.get("max_tokens", ""),
|
65 |
+
semconv.GEN_AI_REQUEST_TEMPERATURE: kwargs.get("temperature", ""),
|
66 |
+
semconv.GEN_AI_REQUEST_TOP_P: kwargs.get("top_p", ""),
|
67 |
+
semconv.GEN_AI_REQUEST_FREQUENCY_PENALTY: kwargs.get("frequency_penalty", ""),
|
68 |
+
semconv.GEN_AI_REQUEST_PRESENCE_PENALTY: kwargs.get("presence_penalty", ""),
|
69 |
+
semconv.GEN_AI_REQUEST_USER: kwargs.get("user", ""),
|
70 |
+
semconv.GEN_AI_REQUEST_EXTRA_HEADERS: kwargs.get("extra_headers", ""),
|
71 |
+
semconv.GEN_AI_REQUEST_STREAMING: kwargs.get("stream", ""),
|
72 |
+
semconv.GEN_AI_OPERATION_NAME: "chat"
|
73 |
+
}
|
74 |
+
|
75 |
+
client = instance._client
|
76 |
+
if isinstance(client, (openai.AsyncOpenAI, openai.OpenAI)):
|
77 |
+
attributes.update({"llm.base_url": str(client.base_url)})
|
78 |
+
|
79 |
+
filterd_attri = {k: v for k, v in attributes.items()
|
80 |
+
if (v and v is not "")}
|
81 |
+
return filterd_attri
|
82 |
+
|
83 |
+
|
84 |
+
def is_streaming_response(response):
|
85 |
+
return isinstance(response, openai.Stream) or isinstance(response, openai.AsyncStream)
|
86 |
+
|
87 |
+
|
88 |
+
def parse_openai_response(response, request_kwargs, instance, is_streaming):
|
89 |
+
return {
|
90 |
+
semconv.GEN_AI_RESPONSE_MODEL: response.get("model") or request_kwargs.get("model") or None,
|
91 |
+
semconv.GEN_AI_SERVER_ADDRESS: _get_openai_base_url(instance)
|
92 |
+
}
|
93 |
+
|
94 |
+
|
95 |
+
def record_stream_token_usage(complete_response, request_kwargs) -> tuple[int, int]:
|
96 |
+
'''
|
97 |
+
return (prompt_usage, completion_usage)
|
98 |
+
'''
|
99 |
+
prompt_usage = 0
|
100 |
+
completion_usage = 0
|
101 |
+
|
102 |
+
# prompt_usage
|
103 |
+
if request_kwargs and request_kwargs.get("messages"):
|
104 |
+
prompt_content = ""
|
105 |
+
model_name = complete_response.get(
|
106 |
+
"model") or request_kwargs.get("model") or "gpt-4"
|
107 |
+
for msg in request_kwargs.get("messages"):
|
108 |
+
if msg.get("content"):
|
109 |
+
prompt_content += msg.get("content")
|
110 |
+
if model_name:
|
111 |
+
prompt_usage = get_token_count_from_string(
|
112 |
+
prompt_content, model_name)
|
113 |
+
|
114 |
+
# completion_usage
|
115 |
+
if complete_response.get("choices"):
|
116 |
+
completion_content = ""
|
117 |
+
model_name = complete_response.get("model") or "gpt-4"
|
118 |
+
|
119 |
+
for choice in complete_response.get("choices"):
|
120 |
+
if choice.get("message") and choice.get("message").get("content"):
|
121 |
+
completion_content += choice["message"]["content"]
|
122 |
+
|
123 |
+
if model_name:
|
124 |
+
completion_usage = get_token_count_from_string(
|
125 |
+
completion_content, model_name)
|
126 |
+
|
127 |
+
return (prompt_usage, completion_usage)
|
128 |
+
|
129 |
+
|
130 |
+
def _get_openai_base_url(instance):
|
131 |
+
if hasattr(instance, "_client"):
|
132 |
+
client = instance._client # pylint: disable=protected-access
|
133 |
+
if isinstance(client, (openai.AsyncOpenAI, openai.OpenAI)):
|
134 |
+
return str(client.base_url)
|
135 |
+
|
136 |
+
return ""
|
137 |
+
|
138 |
+
|
139 |
+
def get_token_count_from_string(string: str, model_name: str):
|
140 |
+
import_package("tiktoken")
|
141 |
+
import tiktoken
|
142 |
+
|
143 |
+
if tiktoken_encodings.get(model_name) is None:
|
144 |
+
try:
|
145 |
+
encoding = tiktoken.encoding_for_model(model_name)
|
146 |
+
except KeyError as ex:
|
147 |
+
logger.warning(
|
148 |
+
f"Failed to get tiktoken encoding for model_name {model_name}, error: {str(ex)}")
|
149 |
+
return None
|
150 |
+
|
151 |
+
tiktoken_encodings[model_name] = encoding
|
152 |
+
else:
|
153 |
+
encoding = tiktoken_encodings.get(model_name)
|
154 |
+
|
155 |
+
token_count = len(encoding.encode(string))
|
156 |
+
return token_count
|
157 |
+
|
158 |
+
|
159 |
+
def record_stream_response_chunk(chunk, complete_response):
|
160 |
+
chunk = model_as_dict(chunk)
|
161 |
+
complete_response["model"] = chunk.get("model")
|
162 |
+
complete_response["id"] = chunk.get("id")
|
163 |
+
|
164 |
+
# prompt filter results
|
165 |
+
if chunk.get("prompt_filter_results"):
|
166 |
+
complete_response["prompt_filter_results"] = chunk.get(
|
167 |
+
"prompt_filter_results")
|
168 |
+
|
169 |
+
for choice in chunk.get("choices"):
|
170 |
+
index = choice.get("index")
|
171 |
+
if len(complete_response.get("choices")) <= index:
|
172 |
+
complete_response["choices"].append(
|
173 |
+
{"index": index, "message": {"content": "", "role": ""}})
|
174 |
+
complete_choice = complete_response.get("choices")[index]
|
175 |
+
if choice.get("finish_reason"):
|
176 |
+
complete_choice["finish_reason"] = choice.get("finish_reason")
|
177 |
+
if choice.get("content_filter_results"):
|
178 |
+
complete_choice["content_filter_results"] = choice.get(
|
179 |
+
"content_filter_results")
|
180 |
+
|
181 |
+
delta = choice.get("delta")
|
182 |
+
|
183 |
+
if delta and delta.get("content"):
|
184 |
+
complete_choice["message"]["content"] += delta.get("content")
|
185 |
+
|
186 |
+
if delta and delta.get("role"):
|
187 |
+
complete_choice["message"]["role"] = delta.get("role")
|
188 |
+
if delta and delta.get("tool_calls"):
|
189 |
+
tool_calls = delta.get("tool_calls")
|
190 |
+
if not isinstance(tool_calls, list) or len(tool_calls) == 0:
|
191 |
+
continue
|
192 |
+
|
193 |
+
if not complete_choice["message"].get("tool_calls"):
|
194 |
+
complete_choice["message"]["tool_calls"] = []
|
195 |
+
|
196 |
+
for tool_call in tool_calls:
|
197 |
+
i = int(tool_call["index"])
|
198 |
+
if len(complete_choice["message"]["tool_calls"]) <= i:
|
199 |
+
complete_choice["message"]["tool_calls"].append(
|
200 |
+
{"id": "", "function": {"name": "", "arguments": ""}}
|
201 |
+
)
|
202 |
+
|
203 |
+
span_tool_call = complete_choice["message"]["tool_calls"][i]
|
204 |
+
span_function = span_tool_call["function"]
|
205 |
+
tool_call_function = tool_call.get("function")
|
206 |
+
|
207 |
+
if tool_call.get("id"):
|
208 |
+
span_tool_call["id"] = tool_call.get("id")
|
209 |
+
if tool_call_function and tool_call_function.get("name"):
|
210 |
+
span_function["name"] = tool_call_function.get("name")
|
211 |
+
if tool_call_function and tool_call_function.get("arguments"):
|
212 |
+
span_function["arguments"] += tool_call_function.get(
|
213 |
+
"arguments")
|
214 |
+
|
215 |
+
|
216 |
+
def parse_request_message(messages):
|
217 |
+
'''
|
218 |
+
flatten request message to attributes
|
219 |
+
'''
|
220 |
+
attributes = {}
|
221 |
+
for i, msg in enumerate(messages):
|
222 |
+
prefix = f"{semconv.GEN_AI_PROMPT}.{i}"
|
223 |
+
attributes.update({f"{prefix}.role": msg.get("role")})
|
224 |
+
if msg.get("content"):
|
225 |
+
content = copy.deepcopy(msg.get("content"))
|
226 |
+
content = json.dumps(content)
|
227 |
+
attributes.update({f"{prefix}.content": content})
|
228 |
+
if msg.get("tool_call_id"):
|
229 |
+
attributes.update({
|
230 |
+
f"{prefix}.tool_call_id": msg.get("tool_call_id")})
|
231 |
+
tool_calls = msg.get("tool_calls")
|
232 |
+
if tool_calls:
|
233 |
+
for i, tool_call in enumerate(tool_calls):
|
234 |
+
tool_call = model_as_dict(tool_call)
|
235 |
+
function = tool_call.get("function")
|
236 |
+
attributes.update({
|
237 |
+
f"{prefix}.tool_calls.{i}.id": tool_call.get("id")})
|
238 |
+
attributes.update({
|
239 |
+
f"{prefix}.tool_calls.{i}.name": function.get("name")})
|
240 |
+
attributes.update({
|
241 |
+
f"{prefix}.tool_calls.{i}.arguments": function.get("arguments")})
|
242 |
+
return attributes
|
243 |
+
|
244 |
+
|
245 |
+
def parse_response_message(choices) -> dict:
|
246 |
+
attributes = {}
|
247 |
+
if not should_trace_prompts():
|
248 |
+
return attributes
|
249 |
+
for choice in choices:
|
250 |
+
index = choice.get("index")
|
251 |
+
prefix = f"{semconv.GEN_AI_COMPLETION}.{index}"
|
252 |
+
attributes.update(
|
253 |
+
{f"{prefix}.finish_reason": choice.get("finish_reason")})
|
254 |
+
|
255 |
+
message = choice.get("message")
|
256 |
+
if not message:
|
257 |
+
continue
|
258 |
+
|
259 |
+
attributes.update({f"{prefix}.role": message.get("role")})
|
260 |
+
|
261 |
+
if message.get("refusal"):
|
262 |
+
attributes.update({f"{prefix}.refusal": message.get("refusal")})
|
263 |
+
else:
|
264 |
+
attributes.update({f"{prefix}.content": message.get("content")})
|
265 |
+
|
266 |
+
function_call = message.get("function_call")
|
267 |
+
if function_call:
|
268 |
+
attributes.update(
|
269 |
+
{f"{prefix}.tool_calls.0.name": function_call.get("name")})
|
270 |
+
attributes.update(
|
271 |
+
{f"{prefix}.tool_calls.0.arguments": function_call.get("arguments")})
|
272 |
+
|
273 |
+
tool_calls = message.get("tool_calls")
|
274 |
+
if tool_calls:
|
275 |
+
for i, tool_call in enumerate(tool_calls):
|
276 |
+
function = tool_call.get("function")
|
277 |
+
attributes.update(
|
278 |
+
{f"{prefix}.tool_calls.{i}.id": tool_call.get("id")})
|
279 |
+
attributes.update(
|
280 |
+
{f"{prefix}.tool_calls.{i}.name": function.get("name")})
|
281 |
+
attributes.update(
|
282 |
+
{f"{prefix}.tool_calls.{i}.arguments": function.get("arguments")})
|
283 |
+
return attributes
|
284 |
+
|
285 |
+
|
286 |
+
def model_as_dict(model):
|
287 |
+
if isinstance(model, dict):
|
288 |
+
return model
|
289 |
+
if _PYDANTIC_VERSION < "2.0.0":
|
290 |
+
return model.dict()
|
291 |
+
if hasattr(model, "model_dump"):
|
292 |
+
return model.model_dump()
|
293 |
+
elif hasattr(model, "parse"): # Raw API response
|
294 |
+
return model_as_dict(model.parse())
|
295 |
+
else:
|
296 |
+
return model
|