File size: 4,671 Bytes
d40f40d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# 📚 管理Agent的记忆

[[open-in-colab]]

归根结底,Agent可以定义为由几个简单组件构成:它拥有工具、提示词。最重要的是,它具备对过往步骤的记忆,能够追溯完整的规划、执行和错误历史。

### 回放Agent的记忆

我们提供了多项功能来审查Agent的过往运行记录。

您可以通过插装(instrumentation)在可视化界面中查看Agent的运行过程,该界面支持对特定步骤进行缩放操作,具体方法参见[插装指南](./inspect_runs)。

您也可以使用`agent.replay()`方法实现回放:

当Agent完成运行后:
```py
from smolagents import InferenceClientModel, CodeAgent

agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=0)

result = agent.run("What's the 20th Fibonacci number?")
```

若要回放最近一次运行,只需使用:
```py
agent.replay()
```

### 动态修改Agent的记忆

许多高级应用场景需要对Agent的记忆进行动态修改。

您可以通过以下方式访问Agent的记忆:

```py
from smolagents import ActionStep

system_prompt_step = agent.memory.system_prompt
print("The system prompt given to the agent was:")
print(system_prompt_step.system_prompt)

task_step = agent.memory.steps[0]
print("\n\nThe first task step was:")
print(task_step.task)

for step in agent.memory.steps:
    if isinstance(step, ActionStep):
        if step.error is not None:
            print(f"\nStep {step.step_number} got this error:\n{step.error}\n")
        else:
            print(f"\nStep {step.step_number} got these observations:\n{step.observations}\n")
```

使用`agent.memory.get_full_steps()`可获取完整步骤字典数据。

您还可以通过步骤回调(step callbacks)实现记忆的动态修改。

步骤回调函数可通过参数直接访问`agent`对象,因此能够访问所有记忆步骤并根据需要进行修改。例如,假设您正在监控网页浏览Agent每个步骤的屏幕截图,希望保留最新截图同时删除旧步骤的图片以节省token消耗。

可参考以下代码示例:
_注:此代码片段不完整,部分导入语句和对象定义已精简,完整代码请访问[原始脚本](https://github.com/huggingface/smolagents/blob/main/src/smolagents/vision_web_browser.py)_

```py
import helium
from PIL import Image
from io import BytesIO
from time import sleep

def update_screenshot(memory_step: ActionStep, agent: CodeAgent) -> None:
    sleep(1.0)  # Let JavaScript animations happen before taking the screenshot
    driver = helium.get_driver()
    latest_step = memory_step.step_number
    for previous_memory_step in agent.memory.steps:  # Remove previous screenshots from logs for lean processing
        if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= latest_step - 2:
            previous_memory_step.observations_images = None
    png_bytes = driver.get_screenshot_as_png()
    image = Image.open(BytesIO(png_bytes))
    memory_step.observations_images = [image.copy()]
```

最后在初始化Agent时,将此函数传入`step_callbacks`参数:

```py
CodeAgent(
    tools=[WebSearchTool(), go_back, close_popups, search_item_ctrl_f],
    model=model,
    additional_authorized_imports=["helium"],
    step_callbacks=[update_screenshot],
    max_steps=20,
    verbosity_level=2,
)
```

请访问我们的 [vision web browser code](https://github.com/huggingface/smolagents/blob/main/src/smolagents/vision_web_browser.py) 查看完整可运行示例。

### 分步运行 Agents

当您需要处理耗时数天的工具调用时,这种方式特别有用:您可以逐步执行Agents。这还允许您在每一步更新记忆。

```py
from smolagents import InferenceClientModel, CodeAgent, ActionStep, TaskStep

agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=1)
print(agent.memory.system_prompt)

task = "What is the 20th Fibonacci number?"

# You could modify the memory as needed here by inputting the memory of another agent.
# agent.memory.steps = previous_agent.memory.steps

# Let's start a new task!
agent.memory.steps.append(TaskStep(task=task, task_images=[]))

final_answer = None
step_number = 1
while final_answer is None and step_number <= 10:
    memory_step = ActionStep(
        step_number=step_number,
        observations_images=[],
    )
    # Run one step.
    final_answer = agent.step(memory_step)
    agent.memory.steps.append(memory_step)
    step_number += 1

    # Change the memory as you please!
    # For instance to update the latest step:
    # agent.memory.steps[-1] = ...

print("The final answer is:", final_answer)
```