File size: 76,159 Bytes
d7949de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
#!/usr/bin/env python
# coding=utf-8

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import inspect
import json
import os
import re
import tempfile
import textwrap
import time
import warnings
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from concurrent.futures import ThreadPoolExecutor, as_completed
from dataclasses import dataclass
from logging import getLogger
from pathlib import Path
from typing import TYPE_CHECKING, Any, Literal, TypeAlias, TypedDict, Union

import jinja2
import yaml
from huggingface_hub import create_repo, metadata_update, snapshot_download, upload_folder
from jinja2 import StrictUndefined, Template
from rich.console import Group
from rich.live import Live
from rich.markdown import Markdown
from rich.panel import Panel
from rich.rule import Rule
from rich.text import Text


if TYPE_CHECKING:
    import PIL.Image

from .agent_types import AgentAudio, AgentImage, handle_agent_output_types
from .default_tools import TOOL_MAPPING, FinalAnswerTool
from .local_python_executor import BASE_BUILTIN_MODULES, LocalPythonExecutor, PythonExecutor, fix_final_answer_code
from .memory import (
    ActionStep,
    AgentMemory,
    FinalAnswerStep,
    PlanningStep,
    SystemPromptStep,
    TaskStep,
    Timing,
    TokenUsage,
    ToolCall,
)
from .models import (
    CODEAGENT_RESPONSE_FORMAT,
    ChatMessage,
    ChatMessageStreamDelta,
    ChatMessageToolCall,
    MessageRole,
    Model,
    agglomerate_stream_deltas,
    parse_json_if_needed,
)
from .monitoring import (
    YELLOW_HEX,
    AgentLogger,
    LogLevel,
    Monitor,
)
from .remote_executors import DockerExecutor, E2BExecutor
from .tools import Tool, validate_tool_arguments
from .utils import (
    AGENT_GRADIO_APP_TEMPLATE,
    AgentError,
    AgentExecutionError,
    AgentGenerationError,
    AgentMaxStepsError,
    AgentParsingError,
    AgentToolCallError,
    AgentToolExecutionError,
    extract_code_from_text,
    is_valid_name,
    make_init_file,
    parse_code_blobs,
    truncate_content,
)


logger = getLogger(__name__)


def get_variable_names(self, template: str) -> set[str]:
    pattern = re.compile(r"\{\{([^{}]+)\}\}")
    return {match.group(1).strip() for match in pattern.finditer(template)}


def populate_template(template: str, variables: dict[str, Any]) -> str:
    compiled_template = Template(template, undefined=StrictUndefined)
    try:
        return compiled_template.render(**variables)
    except Exception as e:
        raise Exception(f"Error during jinja template rendering: {type(e).__name__}: {e}")


@dataclass
class ActionOutput:
    output: Any
    is_final_answer: bool


@dataclass
class ToolOutput:
    id: str
    output: Any
    is_final_answer: bool
    observation: str
    tool_call: ToolCall


class PlanningPromptTemplate(TypedDict):
    """
    Prompt templates for the planning step.

    Args:
        plan (`str`): Initial plan prompt.
        update_plan_pre_messages (`str`): Update plan pre-messages prompt.
        update_plan_post_messages (`str`): Update plan post-messages prompt.
    """

    initial_plan: str
    update_plan_pre_messages: str
    update_plan_post_messages: str


class ManagedAgentPromptTemplate(TypedDict):
    """
    Prompt templates for the managed agent.

    Args:
        task (`str`): Task prompt.
        report (`str`): Report prompt.
    """

    task: str
    report: str


class FinalAnswerPromptTemplate(TypedDict):
    """
    Prompt templates for the final answer.

    Args:
        pre_messages (`str`): Pre-messages prompt.
        post_messages (`str`): Post-messages prompt.
    """

    pre_messages: str
    post_messages: str


class PromptTemplates(TypedDict):
    """
    Prompt templates for the agent.

    Args:
        system_prompt (`str`): System prompt.
        planning ([`~agents.PlanningPromptTemplate`]): Planning prompt templates.
        managed_agent ([`~agents.ManagedAgentPromptTemplate`]): Managed agent prompt templates.
        final_answer ([`~agents.FinalAnswerPromptTemplate`]): Final answer prompt templates.
    """

    system_prompt: str
    planning: PlanningPromptTemplate
    managed_agent: ManagedAgentPromptTemplate
    final_answer: FinalAnswerPromptTemplate


EMPTY_PROMPT_TEMPLATES = PromptTemplates(
    system_prompt="",
    planning=PlanningPromptTemplate(
        initial_plan="",
        update_plan_pre_messages="",
        update_plan_post_messages="",
    ),
    managed_agent=ManagedAgentPromptTemplate(task="", report=""),
    final_answer=FinalAnswerPromptTemplate(pre_messages="", post_messages=""),
)


@dataclass
class RunResult:
    """Holds extended information about an agent run.

    Attributes:
        output (Any | None): The final output of the agent run, if available.
        state (Literal["success", "max_steps_error"]): The final state of the agent after the run.
        messages (list[dict]): The agent's memory, as a list of messages.
        token_usage (TokenUsage | None): Count of tokens used during the run.
        timing (Timing): Timing details of the agent run: start time, end time, duration.
    """

    output: Any | None
    state: Literal["success", "max_steps_error"]
    messages: list[dict]
    token_usage: TokenUsage | None
    timing: Timing


StreamEvent: TypeAlias = Union[
    ChatMessageStreamDelta,
    ChatMessageToolCall,
    ActionOutput,
    ToolCall,
    ToolOutput,
    PlanningStep,
    ActionStep,
    FinalAnswerStep,
]


class MultiStepAgent(ABC):
    """
    Agent class that solves the given task step by step, using the ReAct framework:
    While the objective is not reached, the agent will perform a cycle of action (given by the LLM) and observation (obtained from the environment).

    Args:
        tools (`list[Tool]`): [`Tool`]s that the agent can use.
        model (`Callable[[list[dict[str, str]]], ChatMessage]`): Model that will generate the agent's actions.
        prompt_templates ([`~agents.PromptTemplates`], *optional*): Prompt templates.
        instructions (`str`, *optional*): Custom instructions for the agent, will be inserted in the system prompt.
        max_steps (`int`, default `20`): Maximum number of steps the agent can take to solve the task.
        add_base_tools (`bool`, default `False`): Whether to add the base tools to the agent's tools.
        verbosity_level (`LogLevel`, default `LogLevel.INFO`): Level of verbosity of the agent's logs.
        grammar (`dict[str, str]`, *optional*): Grammar used to parse the LLM output.
            <Deprecated version="1.17.0">
            Parameter `grammar` is deprecated and will be removed in version 1.20.
            </Deprecated>
        managed_agents (`list`, *optional*): Managed agents that the agent can call.
        step_callbacks (`list[Callable]`, *optional*): Callbacks that will be called at each step.
        planning_interval (`int`, *optional*): Interval at which the agent will run a planning step.
        name (`str`, *optional*): Necessary for a managed agent only - the name by which this agent can be called.
        description (`str`, *optional*): Necessary for a managed agent only - the description of this agent.
        provide_run_summary (`bool`, *optional*): Whether to provide a run summary when called as a managed agent.
        final_answer_checks (`list[Callable]`, *optional*): List of validation functions to run before accepting a final answer.
            Each function should:
            - Take the final answer and the agent's memory as arguments.
            - Return a boolean indicating whether the final answer is valid.
    """

    def __init__(
        self,
        tools: list[Tool],
        model: Model,
        prompt_templates: PromptTemplates | None = None,
        instructions: str | None = None,
        max_steps: int = 20,
        add_base_tools: bool = False,
        verbosity_level: LogLevel = LogLevel.INFO,
        grammar: dict[str, str] | None = None,
        managed_agents: list | None = None,
        step_callbacks: list[Callable] | None = None,
        planning_interval: int | None = None,
        name: str | None = None,
        description: str | None = None,
        provide_run_summary: bool = False,
        final_answer_checks: list[Callable] | None = None,
        return_full_result: bool = False,
        logger: AgentLogger | None = None,
    ):
        self.agent_name = self.__class__.__name__
        self.model = model
        self.prompt_templates = prompt_templates or EMPTY_PROMPT_TEMPLATES
        if prompt_templates is not None:
            missing_keys = set(EMPTY_PROMPT_TEMPLATES.keys()) - set(prompt_templates.keys())
            assert not missing_keys, (
                f"Some prompt templates are missing from your custom `prompt_templates`: {missing_keys}"
            )
            for key, value in EMPTY_PROMPT_TEMPLATES.items():
                if isinstance(value, dict):
                    for subkey in value.keys():
                        assert key in prompt_templates.keys() and (subkey in prompt_templates[key].keys()), (
                            f"Some prompt templates are missing from your custom `prompt_templates`: {subkey} under {key}"
                        )

        self.max_steps = max_steps
        self.step_number = 0
        if grammar is not None:
            warnings.warn(
                "Parameter 'grammar' is deprecated and will be removed in version 1.20.",
                FutureWarning,
            )
        self.grammar = grammar
        self.planning_interval = planning_interval
        self.state: dict[str, Any] = {}
        self.name = self._validate_name(name)
        self.description = description
        self.provide_run_summary = provide_run_summary
        self.final_answer_checks = final_answer_checks if final_answer_checks is not None else []
        self.return_full_result = return_full_result
        self.instructions = instructions
        self._setup_managed_agents(managed_agents)
        self._setup_tools(tools, add_base_tools)
        self._validate_tools_and_managed_agents(tools, managed_agents)

        self.task: str | None = None
        self.memory = AgentMemory(self.system_prompt)

        if logger is None:
            self.logger = AgentLogger(level=verbosity_level)
        else:
            self.logger = logger

        self.monitor = Monitor(self.model, self.logger)
        self.step_callbacks = step_callbacks if step_callbacks is not None else []
        self.step_callbacks.append(self.monitor.update_metrics)
        self.stream_outputs = False

    @property
    def system_prompt(self) -> str:
        return self.initialize_system_prompt()

    @system_prompt.setter
    def system_prompt(self, value: str):
        raise AttributeError(
            """The 'system_prompt' property is read-only. Use 'self.prompt_templates["system_prompt"]' instead."""
        )

    def _validate_name(self, name: str | None) -> str | None:
        if name is not None and not is_valid_name(name):
            raise ValueError(f"Agent name '{name}' must be a valid Python identifier and not a reserved keyword.")
        return name

    def _setup_managed_agents(self, managed_agents: list | None = None) -> None:
        """Setup managed agents with proper logging."""
        self.managed_agents = {}
        if managed_agents:
            assert all(agent.name and agent.description for agent in managed_agents), (
                "All managed agents need both a name and a description!"
            )
            self.managed_agents = {agent.name: agent for agent in managed_agents}
            # Ensure managed agents can be called as tools by the model: set their inputs and output_type
            for agent in self.managed_agents.values():
                agent.inputs = {
                    "task": {"type": "string", "description": "Long detailed description of the task."},
                    "additional_args": {
                        "type": "object",
                        "description": "Dictionary of extra inputs to pass to the managed agent, e.g. images, dataframes, or any other contextual data it may need.",
                    },
                }
                agent.output_type = "string"

    def _setup_tools(self, tools, add_base_tools):
        assert all(isinstance(tool, Tool) for tool in tools), "All elements must be instance of Tool (or a subclass)"
        self.tools = {tool.name: tool for tool in tools}
        if add_base_tools:
            self.tools.update(
                {
                    name: cls()
                    for name, cls in TOOL_MAPPING.items()
                    if name != "python_interpreter" or self.__class__.__name__ == "ToolCallingAgent"
                }
            )
        self.tools.setdefault("final_answer", FinalAnswerTool())

    def _validate_tools_and_managed_agents(self, tools, managed_agents):
        tool_and_managed_agent_names = [tool.name for tool in tools]
        if managed_agents is not None:
            tool_and_managed_agent_names += [agent.name for agent in managed_agents]
        if self.name:
            tool_and_managed_agent_names.append(self.name)
        if len(tool_and_managed_agent_names) != len(set(tool_and_managed_agent_names)):
            raise ValueError(
                "Each tool or managed_agent should have a unique name! You passed these duplicate names: "
                f"{[name for name in tool_and_managed_agent_names if tool_and_managed_agent_names.count(name) > 1]}"
            )

    def run(
        self,
        task: str,
        stream: bool = False,
        reset: bool = True,
        images: list["PIL.Image.Image"] | None = None,
        additional_args: dict | None = None,
        max_steps: int | None = None,
    ):
        """
        Run the agent for the given task.

        Args:
            task (`str`): Task to perform.
            stream (`bool`): Whether to run in streaming mode.
                If `True`, returns a generator that yields each step as it is executed. You must iterate over this generator to process the individual steps (e.g., using a for loop or `next()`).
                If `False`, executes all steps internally and returns only the final answer after completion.
            reset (`bool`): Whether to reset the conversation or keep it going from previous run.
            images (`list[PIL.Image.Image]`, *optional*): Image(s) objects.
            additional_args (`dict`, *optional*): Any other variables that you want to pass to the agent run, for instance images or dataframes. Give them clear names!
            max_steps (`int`, *optional*): Maximum number of steps the agent can take to solve the task. if not provided, will use the agent's default value.

        Example:
        ```py
        from smolagents import CodeAgent
        agent = CodeAgent(tools=[])
        agent.run("What is the result of 2 power 3.7384?")
        ```
        """
        max_steps = max_steps or self.max_steps
        self.task = task
        self.interrupt_switch = False
        if additional_args is not None:
            self.state.update(additional_args)
            self.task += f"""
You have been provided with these additional arguments, that you can access using the keys as variables in your python code:
{str(additional_args)}."""

        self.memory.system_prompt = SystemPromptStep(system_prompt=self.system_prompt)
        if reset:
            self.memory.reset()
            self.monitor.reset()

        self.logger.log_task(
            content=self.task.strip(),
            subtitle=f"{type(self.model).__name__} - {(self.model.model_id if hasattr(self.model, 'model_id') else '')}",
            level=LogLevel.INFO,
            title=self.name if hasattr(self, "name") else None,
        )
        self.memory.steps.append(TaskStep(task=self.task, task_images=images))

        if getattr(self, "python_executor", None):
            self.python_executor.send_variables(variables=self.state)
            self.python_executor.send_tools({**self.tools, **self.managed_agents})

        if stream:
            # The steps are returned as they are executed through a generator to iterate on.
            return self._run_stream(task=self.task, max_steps=max_steps, images=images)
        run_start_time = time.time()
        # Outputs are returned only at the end. We only look at the last step.

        steps = list(self._run_stream(task=self.task, max_steps=max_steps, images=images))
        assert isinstance(steps[-1], FinalAnswerStep)
        output = steps[-1].output

        if self.return_full_result:
            total_input_tokens = 0
            total_output_tokens = 0
            correct_token_usage = True
            for step in self.memory.steps:
                if isinstance(step, (ActionStep, PlanningStep)):
                    if step.token_usage is None:
                        correct_token_usage = False
                        break
                    else:
                        total_input_tokens += step.token_usage.input_tokens
                        total_output_tokens += step.token_usage.output_tokens
            if correct_token_usage:
                token_usage = TokenUsage(input_tokens=total_input_tokens, output_tokens=total_output_tokens)
            else:
                token_usage = None

            if self.memory.steps and isinstance(getattr(self.memory.steps[-1], "error", None), AgentMaxStepsError):
                state = "max_steps_error"
            else:
                state = "success"

            messages = self.memory.get_full_steps()

            return RunResult(
                output=output,
                token_usage=token_usage,
                messages=messages,
                timing=Timing(start_time=run_start_time, end_time=time.time()),
                state=state,
            )

        return output

    def _run_stream(
        self, task: str, max_steps: int, images: list["PIL.Image.Image"] | None = None
    ) -> Generator[ActionStep | PlanningStep | FinalAnswerStep | ChatMessageStreamDelta]:
        self.step_number = 1
        returned_final_answer = False
        while not returned_final_answer and self.step_number <= max_steps:
            if self.interrupt_switch:
                raise AgentError("Agent interrupted.", self.logger)

            # Run a planning step if scheduled
            if self.planning_interval is not None and (
                self.step_number == 1 or (self.step_number - 1) % self.planning_interval == 0
            ):
                planning_start_time = time.time()
                planning_step = None
                for element in self._generate_planning_step(
                    task, is_first_step=len(self.memory.steps) == 1, step=self.step_number
                ):  # Don't use the attribute step_number here, because there can be steps from previous runs
                    yield element
                    planning_step = element
                assert isinstance(planning_step, PlanningStep)  # Last yielded element should be a PlanningStep
                self.memory.steps.append(planning_step)
                planning_end_time = time.time()
                planning_step.timing = Timing(
                    start_time=planning_start_time,
                    end_time=planning_end_time,
                )

            # Start action step!
            action_step_start_time = time.time()
            action_step = ActionStep(
                step_number=self.step_number,
                timing=Timing(start_time=action_step_start_time),
                observations_images=images,
            )
            self.logger.log_rule(f"Step {self.step_number}", level=LogLevel.INFO)
            try:
                for output in self._step_stream(action_step):
                    # Yield all
                    yield output

                    if isinstance(output, ActionOutput) and output.is_final_answer:
                        final_answer = output.output
                        self.logger.log(
                            Text(f"Final answer: {final_answer}", style=f"bold {YELLOW_HEX}"),
                            level=LogLevel.INFO,
                        )

                        if self.final_answer_checks:
                            self._validate_final_answer(final_answer)
                        returned_final_answer = True
                        action_step.is_final_answer = True

            except AgentGenerationError as e:
                # Agent generation errors are not caused by a Model error but an implementation error: so we should raise them and exit.
                raise e
            except AgentError as e:
                # Other AgentError types are caused by the Model, so we should log them and iterate.
                action_step.error = e
            finally:
                self._finalize_step(action_step)
                self.memory.steps.append(action_step)
                yield action_step
                self.step_number += 1

        if not returned_final_answer and self.step_number == max_steps + 1:
            final_answer = self._handle_max_steps_reached(task, images)
            yield action_step
        yield FinalAnswerStep(handle_agent_output_types(final_answer))

    def _validate_final_answer(self, final_answer: Any):
        for check_function in self.final_answer_checks:
            try:
                assert check_function(final_answer, self.memory)
            except Exception as e:
                raise AgentError(f"Check {check_function.__name__} failed with error: {e}", self.logger)

    def _finalize_step(self, memory_step: ActionStep):
        memory_step.timing.end_time = time.time()
        for callback in self.step_callbacks:
            # For compatibility with old callbacks that don't take the agent as an argument
            callback(memory_step) if len(inspect.signature(callback).parameters) == 1 else callback(
                memory_step, agent=self
            )

    def _handle_max_steps_reached(self, task: str, images: list["PIL.Image.Image"]) -> Any:
        action_step_start_time = time.time()
        final_answer = self.provide_final_answer(task, images)
        final_memory_step = ActionStep(
            step_number=self.step_number,
            error=AgentMaxStepsError("Reached max steps.", self.logger),
            timing=Timing(start_time=action_step_start_time, end_time=time.time()),
            token_usage=final_answer.token_usage,
        )
        final_memory_step.action_output = final_answer.content
        self._finalize_step(final_memory_step)
        self.memory.steps.append(final_memory_step)
        return final_answer.content

    def _generate_planning_step(
        self, task, is_first_step: bool, step: int
    ) -> Generator[ChatMessageStreamDelta | PlanningStep]:
        start_time = time.time()
        if is_first_step:
            input_messages = [
                ChatMessage(
                    role=MessageRole.USER,
                    content=[
                        {
                            "type": "text",
                            "text": populate_template(
                                self.prompt_templates["planning"]["initial_plan"],
                                variables={"task": task, "tools": self.tools, "managed_agents": self.managed_agents},
                            ),
                        }
                    ],
                )
            ]
            if self.stream_outputs and hasattr(self.model, "generate_stream"):
                plan_message_content = ""
                output_stream = self.model.generate_stream(input_messages, stop_sequences=["<end_plan>"])  # type: ignore
                input_tokens, output_tokens = 0, 0
                with Live("", console=self.logger.console, vertical_overflow="visible") as live:
                    for event in output_stream:
                        if event.content is not None:
                            plan_message_content += event.content
                            live.update(Markdown(plan_message_content))
                            if event.token_usage:
                                output_tokens += event.token_usage.output_tokens
                                input_tokens = event.token_usage.input_tokens
                        yield event
            else:
                plan_message = self.model.generate(input_messages, stop_sequences=["<end_plan>"])
                plan_message_content = plan_message.content
                input_tokens, output_tokens = (
                    (
                        plan_message.token_usage.input_tokens,
                        plan_message.token_usage.output_tokens,
                    )
                    if plan_message.token_usage
                    else (None, None)
                )
            plan = textwrap.dedent(
                f"""Here are the facts I know and the plan of action that I will follow to solve the task:\n```\n{plan_message_content}\n```"""
            )
        else:
            # Summary mode removes the system prompt and previous planning messages output by the model.
            # Removing previous planning messages avoids influencing too much the new plan.
            memory_messages = self.write_memory_to_messages(summary_mode=True)
            plan_update_pre = ChatMessage(
                role=MessageRole.SYSTEM,
                content=[
                    {
                        "type": "text",
                        "text": populate_template(
                            self.prompt_templates["planning"]["update_plan_pre_messages"], variables={"task": task}
                        ),
                    }
                ],
            )
            plan_update_post = ChatMessage(
                role=MessageRole.USER,
                content=[
                    {
                        "type": "text",
                        "text": populate_template(
                            self.prompt_templates["planning"]["update_plan_post_messages"],
                            variables={
                                "task": task,
                                "tools": self.tools,
                                "managed_agents": self.managed_agents,
                                "remaining_steps": (self.max_steps - step),
                            },
                        ),
                    }
                ],
            )
            input_messages = [plan_update_pre] + memory_messages + [plan_update_post]
            if self.stream_outputs and hasattr(self.model, "generate_stream"):
                plan_message_content = ""
                input_tokens, output_tokens = 0, 0
                with Live("", console=self.logger.console, vertical_overflow="visible") as live:
                    for event in self.model.generate_stream(
                        input_messages,
                        stop_sequences=["<end_plan>"],
                    ):  # type: ignore
                        if event.content is not None:
                            plan_message_content += event.content
                            live.update(Markdown(plan_message_content))
                            if event.token_usage:
                                output_tokens += event.token_usage.output_tokens
                                input_tokens = event.token_usage.input_tokens
                        yield event
            else:
                plan_message = self.model.generate(input_messages, stop_sequences=["<end_plan>"])
                plan_message_content = plan_message.content
                if plan_message.token_usage is not None:
                    input_tokens, output_tokens = (
                        plan_message.token_usage.input_tokens,
                        plan_message.token_usage.output_tokens,
                    )
            plan = textwrap.dedent(
                f"""I still need to solve the task I was given:\n```\n{self.task}\n```\n\nHere are the facts I know and my new/updated plan of action to solve the task:\n```\n{plan_message_content}\n```"""
            )
        log_headline = "Initial plan" if is_first_step else "Updated plan"
        self.logger.log(Rule(f"[bold]{log_headline}", style="orange"), Text(plan), level=LogLevel.INFO)
        yield PlanningStep(
            model_input_messages=input_messages,
            plan=plan,
            model_output_message=ChatMessage(role=MessageRole.ASSISTANT, content=plan_message_content),
            token_usage=TokenUsage(input_tokens=input_tokens, output_tokens=output_tokens),
            timing=Timing(start_time=start_time, end_time=time.time()),
        )

    @property
    def logs(self):
        logger.warning(
            "The 'logs' attribute is deprecated and will soon be removed. Please use 'self.memory.steps' instead."
        )
        return [self.memory.system_prompt] + self.memory.steps

    @abstractmethod
    def initialize_system_prompt(self) -> str:
        """To be implemented in child classes"""
        ...

    def interrupt(self):
        """Interrupts the agent execution."""
        self.interrupt_switch = True

    def write_memory_to_messages(
        self,
        summary_mode: bool = False,
    ) -> list[ChatMessage]:
        """
        Reads past llm_outputs, actions, and observations or errors from the memory into a series of messages
        that can be used as input to the LLM. Adds a number of keywords (such as PLAN, error, etc) to help
        the LLM.
        """
        messages = self.memory.system_prompt.to_messages(summary_mode=summary_mode)
        for memory_step in self.memory.steps:
            messages.extend(memory_step.to_messages(summary_mode=summary_mode))
        return messages

    def _step_stream(
        self, memory_step: ActionStep
    ) -> Generator[ChatMessageStreamDelta | ToolCall | ToolOutput | ActionOutput]:
        """
        Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
        Yields ChatMessageStreamDelta during the run if streaming is enabled.
        At the end, yields either None if the step is not final, or the final answer.
        """
        raise NotImplementedError("This method should be implemented in child classes")

    def step(self, memory_step: ActionStep) -> Any:
        """
        Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
        Returns either None if the step is not final, or the final answer.
        """
        return list(self._step_stream(memory_step))[-1]

    def extract_action(self, model_output: str, split_token: str) -> tuple[str, str]:
        """
        Parse action from the LLM output

        Args:
            model_output (`str`): Output of the LLM
            split_token (`str`): Separator for the action. Should match the example in the system prompt.
        """
        try:
            split = model_output.split(split_token)
            rationale, action = (
                split[-2],
                split[-1],
            )  # NOTE: using indexes starting from the end solves for when you have more than one split_token in the output
        except Exception:
            raise AgentParsingError(
                f"No '{split_token}' token provided in your output.\nYour output:\n{model_output}\n. Be sure to include an action, prefaced with '{split_token}'!",
                self.logger,
            )
        return rationale.strip(), action.strip()

    def provide_final_answer(self, task: str, images: list["PIL.Image.Image"] | None = None) -> ChatMessage:
        """
        Provide the final answer to the task, based on the logs of the agent's interactions.

        Args:
            task (`str`): Task to perform.
            images (`list[PIL.Image.Image]`, *optional*): Image(s) objects.

        Returns:
            `str`: Final answer to the task.
        """
        messages = [
            ChatMessage(
                role=MessageRole.SYSTEM,
                content=[
                    {
                        "type": "text",
                        "text": self.prompt_templates["final_answer"]["pre_messages"],
                    }
                ],
            )
        ]
        if images:
            messages[0].content += [{"type": "image", "image": image} for image in images]
        messages += self.write_memory_to_messages()[1:]
        messages.append(
            ChatMessage(
                role=MessageRole.USER,
                content=[
                    {
                        "type": "text",
                        "text": populate_template(
                            self.prompt_templates["final_answer"]["post_messages"], variables={"task": task}
                        ),
                    }
                ],
            )
        )
        try:
            chat_message: ChatMessage = self.model.generate(messages)
            return chat_message
        except Exception as e:
            return ChatMessage(role=MessageRole.ASSISTANT, content=f"Error in generating final LLM output:\n{e}")

    def visualize(self):
        """Creates a rich tree visualization of the agent's structure."""
        self.logger.visualize_agent_tree(self)

    def replay(self, detailed: bool = False):
        """Prints a pretty replay of the agent's steps.

        Args:
            detailed (bool, optional): If True, also displays the memory at each step. Defaults to False.
                Careful: will increase log length exponentially. Use only for debugging.
        """
        self.memory.replay(self.logger, detailed=detailed)

    def __call__(self, task: str, **kwargs):
        """Adds additional prompting for the managed agent, runs it, and wraps the output.
        This method is called only by a managed agent.
        """
        full_task = populate_template(
            self.prompt_templates["managed_agent"]["task"],
            variables=dict(name=self.name, task=task),
        )
        result = self.run(full_task, **kwargs)
        if isinstance(result, RunResult):
            report = result.output
        else:
            report = result
        answer = populate_template(
            self.prompt_templates["managed_agent"]["report"], variables=dict(name=self.name, final_answer=report)
        )
        if self.provide_run_summary:
            answer += "\n\nFor more detail, find below a summary of this agent's work:\n<summary_of_work>\n"
            for message in self.write_memory_to_messages(summary_mode=True):
                content = message["content"]
                answer += "\n" + truncate_content(str(content)) + "\n---"
            answer += "\n</summary_of_work>"
        return answer

    def save(self, output_dir: str | Path, relative_path: str | None = None):
        """
        Saves the relevant code files for your agent. This will copy the code of your agent in `output_dir` as well as autogenerate:

        - a `tools` folder containing the logic for each of the tools under `tools/{tool_name}.py`.
        - a `managed_agents` folder containing the logic for each of the managed agents.
        - an `agent.json` file containing a dictionary representing your agent.
        - a `prompt.yaml` file containing the prompt templates used by your agent.
        - an `app.py` file providing a UI for your agent when it is exported to a Space with `agent.push_to_hub()`
        - a `requirements.txt` containing the names of the modules used by your tool (as detected when inspecting its
          code)

        Args:
            output_dir (`str` or `Path`): The folder in which you want to save your agent.
        """
        make_init_file(output_dir)

        # Recursively save managed agents
        if self.managed_agents:
            make_init_file(os.path.join(output_dir, "managed_agents"))
            for agent_name, agent in self.managed_agents.items():
                agent_suffix = f"managed_agents.{agent_name}"
                if relative_path:
                    agent_suffix = relative_path + "." + agent_suffix
                agent.save(os.path.join(output_dir, "managed_agents", agent_name), relative_path=agent_suffix)

        class_name = self.__class__.__name__

        # Save tools to different .py files
        for tool in self.tools.values():
            make_init_file(os.path.join(output_dir, "tools"))
            tool.save(os.path.join(output_dir, "tools"), tool_file_name=tool.name, make_gradio_app=False)

        # Save prompts to yaml
        yaml_prompts = yaml.safe_dump(
            self.prompt_templates,
            default_style="|",  # This forces block literals for all strings
            default_flow_style=False,
            width=float("inf"),
            sort_keys=False,
            allow_unicode=True,
            indent=2,
        )

        with open(os.path.join(output_dir, "prompts.yaml"), "w", encoding="utf-8") as f:
            f.write(yaml_prompts)

        # Save agent dictionary to json
        agent_dict = self.to_dict()
        agent_dict["tools"] = [tool.name for tool in self.tools.values()]
        agent_dict["managed_agents"] = {agent.name: agent.__class__.__name__ for agent in self.managed_agents.values()}
        with open(os.path.join(output_dir, "agent.json"), "w", encoding="utf-8") as f:
            json.dump(agent_dict, f, indent=4)

        # Save requirements
        with open(os.path.join(output_dir, "requirements.txt"), "w", encoding="utf-8") as f:
            f.writelines(f"{r}\n" for r in agent_dict["requirements"])

        # Make agent.py file with Gradio UI
        agent_name = f"agent_{self.name}" if getattr(self, "name", None) else "agent"
        managed_agent_relative_path = relative_path + "." if relative_path is not None else ""
        app_template = AGENT_GRADIO_APP_TEMPLATE
        template_env = jinja2.Environment(loader=jinja2.BaseLoader(), undefined=jinja2.StrictUndefined)
        template_env.filters["repr"] = repr
        template_env.filters["camelcase"] = lambda value: "".join(word.capitalize() for word in value.split("_"))
        template = template_env.from_string(app_template)

        # Render the app.py file from Jinja2 template
        app_text = template.render(
            {
                "agent_name": agent_name,
                "class_name": class_name,
                "agent_dict": agent_dict,
                "tools": self.tools,
                "managed_agents": self.managed_agents,
                "managed_agent_relative_path": managed_agent_relative_path,
            }
        )

        with open(os.path.join(output_dir, "app.py"), "w", encoding="utf-8") as f:
            f.write(app_text + "\n")  # Append newline at the end

    def to_dict(self) -> dict[str, Any]:
        """Convert the agent to a dictionary representation.

        Returns:
            `dict`: Dictionary representation of the agent.
        """
        # TODO: handle serializing step_callbacks and final_answer_checks
        for attr in ["final_answer_checks", "step_callbacks"]:
            if getattr(self, attr, None):
                self.logger.log(f"This agent has {attr}: they will be ignored by this method.", LogLevel.INFO)

        tool_dicts = [tool.to_dict() for tool in self.tools.values()]
        tool_requirements = {req for tool in self.tools.values() for req in tool.to_dict()["requirements"]}
        managed_agents_requirements = {
            req for managed_agent in self.managed_agents.values() for req in managed_agent.to_dict()["requirements"]
        }
        requirements = tool_requirements | managed_agents_requirements
        if hasattr(self, "authorized_imports"):
            requirements.update(
                {package.split(".")[0] for package in self.authorized_imports if package not in BASE_BUILTIN_MODULES}
            )

        agent_dict = {
            "class": self.__class__.__name__,
            "tools": tool_dicts,
            "model": {
                "class": self.model.__class__.__name__,
                "data": self.model.to_dict(),
            },
            "managed_agents": [managed_agent.to_dict() for managed_agent in self.managed_agents.values()],
            "prompt_templates": self.prompt_templates,
            "max_steps": self.max_steps,
            "verbosity_level": int(self.logger.level),
            "grammar": self.grammar,
            "planning_interval": self.planning_interval,
            "name": self.name,
            "description": self.description,
            "requirements": sorted(requirements),
        }
        return agent_dict

    @classmethod
    def from_dict(cls, agent_dict: dict[str, Any], **kwargs) -> "MultiStepAgent":
        """Create agent from a dictionary representation.

        Args:
            agent_dict (`dict[str, Any]`): Dictionary representation of the agent.
            **kwargs: Additional keyword arguments that will override agent_dict values.

        Returns:
            `MultiStepAgent`: Instance of the agent class.
        """
        # Load model
        model_info = agent_dict["model"]
        model_class = getattr(importlib.import_module("smolagents.models"), model_info["class"])
        model = model_class.from_dict(model_info["data"])
        # Load tools
        tools = []
        for tool_info in agent_dict["tools"]:
            tools.append(Tool.from_code(tool_info["code"]))
        # Load managed agents
        managed_agents = []
        for managed_agent_name, managed_agent_class_name in agent_dict["managed_agents"].items():
            managed_agent_class = getattr(importlib.import_module("smolagents.agents"), managed_agent_class_name)
            managed_agents.append(managed_agent_class.from_dict(agent_dict["managed_agents"][managed_agent_name]))
        # Extract base agent parameters
        agent_args = {
            "model": model,
            "tools": tools,
            "prompt_templates": agent_dict.get("prompt_templates"),
            "max_steps": agent_dict.get("max_steps"),
            "verbosity_level": agent_dict.get("verbosity_level"),
            "grammar": agent_dict.get("grammar"),
            "planning_interval": agent_dict.get("planning_interval"),
            "name": agent_dict.get("name"),
            "description": agent_dict.get("description"),
        }
        # Filter out None values to use defaults from __init__
        agent_args = {k: v for k, v in agent_args.items() if v is not None}
        # Update with any additional kwargs
        agent_args.update(kwargs)
        # Create agent instance
        return cls(**agent_args)

    @classmethod
    def from_hub(
        cls,
        repo_id: str,
        token: str | None = None,
        trust_remote_code: bool = False,
        **kwargs,
    ):
        """
        Loads an agent defined on the Hub.

        <Tip warning={true}>

        Loading a tool from the Hub means that you'll download the tool and execute it locally.
        ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
        installing a package using pip/npm/apt.

        </Tip>

        Args:
            repo_id (`str`):
                The name of the repo on the Hub where your tool is defined.
            token (`str`, *optional*):
                The token to identify you on hf.co. If unset, will use the token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            trust_remote_code(`bool`, *optional*, defaults to False):
                This flags marks that you understand the risk of running remote code and that you trust this tool.
                If not setting this to True, loading the tool from Hub will fail.
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
                `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your agent, and the
                others will be passed along to its init.
        """
        if not trust_remote_code:
            raise ValueError(
                "Loading an agent from Hub requires to acknowledge you trust its code: to do so, pass `trust_remote_code=True`."
            )

        # Get the agent's Hub folder.
        download_kwargs = {"token": token, "repo_type": "space"} | {
            key: kwargs.pop(key)
            for key in [
                "cache_dir",
                "force_download",
                "proxies",
                "revision",
                "local_files_only",
            ]
            if key in kwargs
        }

        download_folder = Path(snapshot_download(repo_id=repo_id, **download_kwargs))
        return cls.from_folder(download_folder, **kwargs)

    @classmethod
    def from_folder(cls, folder: str | Path, **kwargs):
        """Loads an agent from a local folder.

        Args:
            folder (`str` or `Path`): The folder where the agent is saved.
            **kwargs: Additional keyword arguments that will be passed to the agent's init.
        """
        # Load agent.json
        folder = Path(folder)
        agent_dict = json.loads((folder / "agent.json").read_text())

        # Load managed agents from their respective folders, recursively
        managed_agents = []
        for managed_agent_name, managed_agent_class_name in agent_dict["managed_agents"].items():
            agent_cls = getattr(importlib.import_module("smolagents.agents"), managed_agent_class_name)
            managed_agents.append(agent_cls.from_folder(folder / "managed_agents" / managed_agent_name))
        agent_dict["managed_agents"] = {}

        # Load tools
        tools = []
        for tool_name in agent_dict["tools"]:
            tool_code = (folder / "tools" / f"{tool_name}.py").read_text()
            tools.append({"name": tool_name, "code": tool_code})
        agent_dict["tools"] = tools

        # Add managed agents to kwargs to override the empty list in from_dict
        if managed_agents:
            kwargs["managed_agents"] = managed_agents

        return cls.from_dict(agent_dict, **kwargs)

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: str = "Upload agent",
        private: bool | None = None,
        token: bool | str | None = None,
        create_pr: bool = False,
    ) -> str:
        """
        Upload the agent to the Hub.

        Parameters:
            repo_id (`str`):
                The name of the repository you want to push to. It should contain your organization name when
                pushing to a given organization.
            commit_message (`str`, *optional*, defaults to `"Upload agent"`):
                Message to commit while pushing.
            private (`bool`, *optional*, defaults to `None`):
                Whether to make the repo private. If `None`, the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
            token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether to create a PR with the uploaded files or directly commit.
        """
        repo_url = create_repo(
            repo_id=repo_id,
            token=token,
            private=private,
            exist_ok=True,
            repo_type="space",
            space_sdk="gradio",
        )
        repo_id = repo_url.repo_id
        metadata_update(
            repo_id,
            {"tags": ["smolagents", "agent"]},
            repo_type="space",
            token=token,
            overwrite=True,
        )

        with tempfile.TemporaryDirectory() as work_dir:
            self.save(work_dir)
            logger.info(f"Uploading the following files to {repo_id}: {','.join(os.listdir(work_dir))}")
            return upload_folder(
                repo_id=repo_id,
                commit_message=commit_message,
                folder_path=work_dir,
                token=token,
                create_pr=create_pr,
                repo_type="space",
            )


class ToolCallingAgent(MultiStepAgent):
    """
    This agent uses JSON-like tool calls, using method `model.get_tool_call` to leverage the LLM engine's tool calling capabilities.

    Args:
        tools (`list[Tool]`): [`Tool`]s that the agent can use.
        model (`Model`): Model that will generate the agent's actions.
        prompt_templates ([`~agents.PromptTemplates`], *optional*): Prompt templates.
        planning_interval (`int`, *optional*): Interval at which the agent will run a planning step.
        stream_outputs (`bool`, *optional*, default `False`): Whether to stream outputs during execution.
        max_tool_threads (`int`, *optional*): Maximum number of threads for parallel tool calls.
            Higher values increase concurrency but resource usage as well.
            Defaults to `ThreadPoolExecutor`'s default.
        **kwargs: Additional keyword arguments.
    """

    def __init__(
        self,
        tools: list[Tool],
        model: Model,
        prompt_templates: PromptTemplates | None = None,
        planning_interval: int | None = None,
        stream_outputs: bool = False,
        max_tool_threads: int | None = None,
        **kwargs,
    ):
        prompt_templates = prompt_templates or yaml.safe_load(
            importlib.resources.files("smolagents.prompts").joinpath("toolcalling_agent.yaml").read_text()
        )
        super().__init__(
            tools=tools,
            model=model,
            prompt_templates=prompt_templates,
            planning_interval=planning_interval,
            **kwargs,
        )
        # Streaming setup
        self.stream_outputs = stream_outputs
        if self.stream_outputs and not hasattr(self.model, "generate_stream"):
            raise ValueError(
                "`stream_outputs` is set to True, but the model class implements no `generate_stream` method."
            )
        # Tool calling setup
        self.max_tool_threads = max_tool_threads

    @property
    def tools_and_managed_agents(self):
        """Returns a combined list of tools and managed agents."""
        return list(self.tools.values()) + list(self.managed_agents.values())

    def initialize_system_prompt(self) -> str:
        system_prompt = populate_template(
            self.prompt_templates["system_prompt"],
            variables={
                "tools": self.tools,
                "managed_agents": self.managed_agents,
                "custom_instructions": self.instructions,
            },
        )
        return system_prompt

    def _step_stream(
        self, memory_step: ActionStep
    ) -> Generator[ChatMessageStreamDelta | ToolCall | ToolOutput | ActionOutput]:
        """
        Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
        Yields ChatMessageStreamDelta during the run if streaming is enabled.
        At the end, yields either None if the step is not final, or the final answer.
        """
        memory_messages = self.write_memory_to_messages()

        input_messages = memory_messages.copy()

        # Add new step in logs
        memory_step.model_input_messages = input_messages

        try:
            if self.stream_outputs and hasattr(self.model, "generate_stream"):
                output_stream = self.model.generate_stream(
                    input_messages,
                    stop_sequences=["Observation:", "Calling tools:"],
                    tools_to_call_from=self.tools_and_managed_agents,
                )

                chat_message_stream_deltas: list[ChatMessageStreamDelta] = []
                with Live("", console=self.logger.console, vertical_overflow="visible") as live:
                    for event in output_stream:
                        chat_message_stream_deltas.append(event)
                        live.update(
                            Markdown(agglomerate_stream_deltas(chat_message_stream_deltas).render_as_markdown())
                        )
                        yield event
                chat_message = agglomerate_stream_deltas(chat_message_stream_deltas)
            else:
                chat_message: ChatMessage = self.model.generate(
                    input_messages,
                    stop_sequences=["Observation:", "Calling tools:"],
                    tools_to_call_from=self.tools_and_managed_agents,
                )
                if chat_message.content is None and chat_message.raw is not None:
                    log_content = str(chat_message.raw)
                else:
                    log_content = str(chat_message.content) or ""

                self.logger.log_markdown(
                    content=log_content,
                    title="Output message of the LLM:",
                    level=LogLevel.DEBUG,
                )

            # Record model output
            memory_step.model_output_message = chat_message
            memory_step.model_output = chat_message.content
            memory_step.token_usage = chat_message.token_usage
        except Exception as e:
            raise AgentGenerationError(f"Error while generating output:\n{e}", self.logger) from e

        if chat_message.tool_calls is None or len(chat_message.tool_calls) == 0:
            try:
                chat_message = self.model.parse_tool_calls(chat_message)
            except Exception as e:
                raise AgentParsingError(f"Error while parsing tool call from model output: {e}", self.logger)
        else:
            for tool_call in chat_message.tool_calls:
                tool_call.function.arguments = parse_json_if_needed(tool_call.function.arguments)
        final_answer, got_final_answer = None, False
        for output in self.process_tool_calls(chat_message, memory_step):
            yield output
            if isinstance(output, ToolOutput):
                if output.is_final_answer:
                    if got_final_answer:
                        raise AgentToolExecutionError(
                            "You returned multiple final answers. Please return only one single final answer!",
                            self.logger,
                        )
                    final_answer = output.output
                    got_final_answer = True

                    # Manage state variables
                    if isinstance(final_answer, str) and final_answer in self.state.keys():
                        final_answer = self.state[final_answer]
        yield ActionOutput(
            output=final_answer,
            is_final_answer=got_final_answer,
        )

    def process_tool_calls(
        self, chat_message: ChatMessage, memory_step: ActionStep
    ) -> Generator[ToolCall | ToolOutput]:
        """Process tool calls from the model output and update agent memory.

        Args:
            chat_message (`ChatMessage`): Chat message containing tool calls from the model.
            memory_step (`ActionStep)`: Memory ActionStep to update with results.

        Yields:
            `ToolCall | ToolOutput`: The tool call or tool output.
        """
        parallel_calls: dict[str, ToolCall] = {}
        assert chat_message.tool_calls is not None
        for chat_tool_call in chat_message.tool_calls:
            tool_call = ToolCall(
                name=chat_tool_call.function.name, arguments=chat_tool_call.function.arguments, id=chat_tool_call.id
            )
            yield tool_call
            parallel_calls[tool_call.id] = tool_call

        # Helper function to process a single tool call
        def process_single_tool_call(tool_call: ToolCall) -> ToolOutput:
            tool_name = tool_call.name
            tool_arguments = tool_call.arguments or {}
            self.logger.log(
                Panel(Text(f"Calling tool: '{tool_name}' with arguments: {tool_arguments}")),
                level=LogLevel.INFO,
            )
            tool_call_result = self.execute_tool_call(tool_name, tool_arguments)
            tool_call_result_type = type(tool_call_result)
            if tool_call_result_type in [AgentImage, AgentAudio]:
                if tool_call_result_type == AgentImage:
                    observation_name = "image.png"
                elif tool_call_result_type == AgentAudio:
                    observation_name = "audio.mp3"
                # TODO: tool_call_result naming could allow for different names of same type
                self.state[observation_name] = tool_call_result
                observation = f"Stored '{observation_name}' in memory."
            else:
                observation = str(tool_call_result).strip()
            self.logger.log(
                f"Observations: {observation.replace('[', '|')}",  # escape potential rich-tag-like components
                level=LogLevel.INFO,
            )
            is_final_answer = tool_name == "final_answer"

            return ToolOutput(
                id=tool_call.id,
                output=tool_call_result,
                is_final_answer=is_final_answer,
                observation=observation,
                tool_call=tool_call,
            )

        # Process tool calls in parallel
        outputs = {}
        if len(parallel_calls) == 1:
            # If there's only one call, process it directly
            tool_call = list(parallel_calls.values())[0]
            tool_output = process_single_tool_call(tool_call)
            outputs[tool_output.id] = tool_output
            yield tool_output
        else:
            # If multiple tool calls, process them in parallel
            with ThreadPoolExecutor(self.max_tool_threads) as executor:
                futures = [
                    executor.submit(process_single_tool_call, tool_call) for tool_call in parallel_calls.values()
                ]
                for future in as_completed(futures):
                    tool_output = future.result()
                    outputs[tool_output.id] = tool_output
                    yield tool_output

        memory_step.tool_calls = [parallel_calls[k] for k in sorted(parallel_calls.keys())]
        memory_step.model_output = memory_step.model_output or ""
        memory_step.observations = memory_step.observations or ""
        for tool_output in [outputs[k] for k in sorted(outputs.keys())]:
            message = f"Tool call {tool_output.id}: calling '{tool_output.tool_call.name}' with arguments: {tool_output.tool_call.arguments}\n"
            memory_step.model_output += message
            memory_step.observations += tool_output.observation + "\n"
        memory_step.model_output = memory_step.model_output.rstrip("\n")
        memory_step.observations = (
            memory_step.observations.rstrip("\n") if memory_step.observations else memory_step.observations
        )

    def _substitute_state_variables(self, arguments: dict[str, str] | str) -> dict[str, Any] | str:
        """Replace string values in arguments with their corresponding state values if they exist."""
        if isinstance(arguments, dict):
            return {
                key: self.state.get(value, value) if isinstance(value, str) else value
                for key, value in arguments.items()
            }
        return arguments

    def execute_tool_call(self, tool_name: str, arguments: dict[str, str] | str) -> Any:
        """
        Execute a tool or managed agent with the provided arguments.

        The arguments are replaced with the actual values from the state if they refer to state variables.

        Args:
            tool_name (`str`): Name of the tool or managed agent to execute.
            arguments (dict[str, str] | str): Arguments passed to the tool call.
        """
        # Check if the tool exists
        available_tools = {**self.tools, **self.managed_agents}
        if tool_name not in available_tools:
            raise AgentToolExecutionError(
                f"Unknown tool {tool_name}, should be one of: {', '.join(available_tools)}.", self.logger
            )

        # Get the tool and substitute state variables in arguments
        tool = available_tools[tool_name]
        arguments = self._substitute_state_variables(arguments)
        is_managed_agent = tool_name in self.managed_agents

        error_msg = validate_tool_arguments(tool, arguments)
        if error_msg:
            raise AgentToolCallError(error_msg, self.logger)

        try:
            # Call tool with appropriate arguments
            if isinstance(arguments, dict):
                return tool(**arguments) if is_managed_agent else tool(**arguments, sanitize_inputs_outputs=True)
            else:
                return tool(arguments) if is_managed_agent else tool(arguments, sanitize_inputs_outputs=True)

        except Exception as e:
            # Handle execution errors
            if is_managed_agent:
                error_msg = (
                    f"Error executing request to team member '{tool_name}' with arguments {str(arguments)}: {e}\n"
                    "Please try again or request to another team member"
                )
            else:
                error_msg = (
                    f"Error executing tool '{tool_name}' with arguments {str(arguments)}: {type(e).__name__}: {e}\n"
                    "Please try again or use another tool"
                )
            raise AgentToolExecutionError(error_msg, self.logger) from e


class CodeAgent(MultiStepAgent):
    """
    In this agent, the tool calls will be formulated by the LLM in code format, then parsed and executed.

    Args:
        tools (`list[Tool]`): [`Tool`]s that the agent can use.
        model (`Model`): Model that will generate the agent's actions.
        prompt_templates ([`~agents.PromptTemplates`], *optional*): Prompt templates.
        additional_authorized_imports (`list[str]`, *optional*): Additional authorized imports for the agent.
        planning_interval (`int`, *optional*): Interval at which the agent will run a planning step.
        executor_type (`str`, default `"local"`): Which executor type to use between `"local"`, `"e2b"`, or `"docker"`.
        executor_kwargs (`dict`, *optional*): Additional arguments to pass to initialize the executor.
        max_print_outputs_length (`int`, *optional*): Maximum length of the print outputs.
        stream_outputs (`bool`, *optional*, default `False`): Whether to stream outputs during execution.
        use_structured_outputs_internally (`bool`, default `False`): Whether to use structured generation at each action step: improves performance for many models.

            <Added version="1.17.0"/>
        grammar (`dict[str, str]`, *optional*): Grammar used to parse the LLM output.
            <Deprecated version="1.17.0">
            Parameter `grammar` is deprecated and will be removed in version 1.20.
            </Deprecated>
        **kwargs: Additional keyword arguments.
    """

    def __init__(
        self,
        tools: list[Tool],
        model: Model,
        prompt_templates: PromptTemplates | None = None,
        additional_authorized_imports: list[str] | None = None,
        planning_interval: int | None = None,
        executor_type: str | None = "local",
        executor_kwargs: dict[str, Any] | None = None,
        max_print_outputs_length: int | None = None,
        stream_outputs: bool = False,
        use_structured_outputs_internally: bool = False,
        grammar: dict[str, str] | None = None,
        **kwargs,
    ):
        self.additional_authorized_imports = additional_authorized_imports if additional_authorized_imports else []
        self.authorized_imports = sorted(set(BASE_BUILTIN_MODULES) | set(self.additional_authorized_imports))
        self.max_print_outputs_length = max_print_outputs_length
        self._use_structured_outputs_internally = use_structured_outputs_internally
        if use_structured_outputs_internally:
            prompt_templates = prompt_templates or yaml.safe_load(
                importlib.resources.files("smolagents.prompts").joinpath("structured_code_agent.yaml").read_text()
            )
        else:
            prompt_templates = prompt_templates or yaml.safe_load(
                importlib.resources.files("smolagents.prompts").joinpath("code_agent.yaml").read_text()
            )
        if grammar and use_structured_outputs_internally:
            raise ValueError("You cannot use 'grammar' and 'use_structured_outputs_internally' at the same time.")
        super().__init__(
            tools=tools,
            model=model,
            prompt_templates=prompt_templates,
            grammar=grammar,
            planning_interval=planning_interval,
            **kwargs,
        )
        self.stream_outputs = stream_outputs
        if self.stream_outputs and not hasattr(self.model, "generate_stream"):
            raise ValueError(
                "`stream_outputs` is set to True, but the model class implements no `generate_stream` method."
            )
        if "*" in self.additional_authorized_imports:
            self.logger.log(
                "Caution: you set an authorization for all imports, meaning your agent can decide to import any package it deems necessary. This might raise issues if the package is not installed in your environment.",
                level=LogLevel.INFO,
            )
        self.executor_type = executor_type or "local"
        self.executor_kwargs = executor_kwargs or {}
        self.python_executor = self.create_python_executor()

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.cleanup()

    def cleanup(self):
        """Clean up resources used by the agent, such as the remote Python executor."""
        if hasattr(self.python_executor, "cleanup"):
            self.python_executor.cleanup()

    def create_python_executor(self) -> PythonExecutor:
        match self.executor_type:
            case "e2b" | "docker":
                if self.managed_agents:
                    raise Exception("Managed agents are not yet supported with remote code execution.")
                if self.executor_type == "e2b":
                    return E2BExecutor(self.additional_authorized_imports, self.logger, **self.executor_kwargs)
                else:
                    return DockerExecutor(self.additional_authorized_imports, self.logger, **self.executor_kwargs)
            case "local":
                return LocalPythonExecutor(
                    self.additional_authorized_imports,
                    **{"max_print_outputs_length": self.max_print_outputs_length} | self.executor_kwargs,
                )
            case _:  # if applicable
                raise ValueError(f"Unsupported executor type: {self.executor_type}")

    def initialize_system_prompt(self) -> str:
        system_prompt = populate_template(
            self.prompt_templates["system_prompt"],
            variables={
                "tools": self.tools,
                "managed_agents": self.managed_agents,
                "authorized_imports": (
                    "You can import from any package you want."
                    if "*" in self.authorized_imports
                    else str(self.authorized_imports)
                ),
                "custom_instructions": self.instructions,
            },
        )
        return system_prompt

    def _step_stream(
        self, memory_step: ActionStep
    ) -> Generator[ChatMessageStreamDelta | ToolCall | ToolOutput | ActionOutput]:
        """
        Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
        Yields ChatMessageStreamDelta during the run if streaming is enabled.
        At the end, yields either None if the step is not final, or the final answer.
        """
        memory_messages = self.write_memory_to_messages()

        input_messages = memory_messages.copy()
        ### Generate model output ###
        memory_step.model_input_messages = input_messages
        try:
            additional_args: dict[str, Any] = {}
            if self.grammar:
                additional_args["grammar"] = self.grammar
            if self._use_structured_outputs_internally:
                additional_args["response_format"] = CODEAGENT_RESPONSE_FORMAT
            if self.stream_outputs:
                output_stream = self.model.generate_stream(
                    input_messages,
                    stop_sequences=["<end_code>", "Observation:", "Calling tools:"],
                    **additional_args,
                )
                chat_message_stream_deltas: list[ChatMessageStreamDelta] = []
                with Live("", console=self.logger.console, vertical_overflow="visible") as live:
                    for event in output_stream:
                        chat_message_stream_deltas.append(event)
                        live.update(
                            Markdown(agglomerate_stream_deltas(chat_message_stream_deltas).render_as_markdown())
                        )
                        yield event
                chat_message = agglomerate_stream_deltas(chat_message_stream_deltas)
                memory_step.model_output_message = chat_message
                output_text = chat_message.content
            else:
                chat_message: ChatMessage = self.model.generate(
                    input_messages,
                    stop_sequences=["<end_code>", "Observation:", "Calling tools:"],
                    **additional_args,
                )
                memory_step.model_output_message = chat_message
                output_text = chat_message.content
                self.logger.log_markdown(
                    content=output_text,
                    title="Output message of the LLM:",
                    level=LogLevel.DEBUG,
                )

            # This adds <end_code> sequence to the history.
            # This will nudge ulterior LLM calls to finish with <end_code>, thus efficiently stopping generation.
            if output_text and output_text.strip().endswith("```"):
                output_text += "<end_code>"
                memory_step.model_output_message.content = output_text

            memory_step.token_usage = chat_message.token_usage
            memory_step.model_output = output_text
        except Exception as e:
            raise AgentGenerationError(f"Error in generating model output:\n{e}", self.logger) from e

        ### Parse output ###
        try:
            if self._use_structured_outputs_internally:
                code_action = json.loads(output_text)["code"]
                code_action = extract_code_from_text(code_action) or code_action
            else:
                code_action = parse_code_blobs(output_text)
            code_action = fix_final_answer_code(code_action)
            memory_step.code_action = code_action
        except Exception as e:
            error_msg = f"Error in code parsing:\n{e}\nMake sure to provide correct code blobs."
            raise AgentParsingError(error_msg, self.logger)

        tool_call = ToolCall(
            name="python_interpreter",
            arguments=code_action,
            id=f"call_{len(self.memory.steps)}",
        )
        yield tool_call
        memory_step.tool_calls = [tool_call]

        ### Execute action ###
        self.logger.log_code(title="Executing parsed code:", content=code_action, level=LogLevel.INFO)
        is_final_answer = False
        try:
            output, execution_logs, is_final_answer = self.python_executor(code_action)
            execution_outputs_console = []
            if len(execution_logs) > 0:
                execution_outputs_console += [
                    Text("Execution logs:", style="bold"),
                    Text(execution_logs),
                ]
            observation = "Execution logs:\n" + execution_logs
        except Exception as e:
            if hasattr(self.python_executor, "state") and "_print_outputs" in self.python_executor.state:
                execution_logs = str(self.python_executor.state["_print_outputs"])
                if len(execution_logs) > 0:
                    execution_outputs_console = [
                        Text("Execution logs:", style="bold"),
                        Text(execution_logs),
                    ]
                    memory_step.observations = "Execution logs:\n" + execution_logs
                    self.logger.log(Group(*execution_outputs_console), level=LogLevel.INFO)
            error_msg = str(e)
            if "Import of " in error_msg and " is not allowed" in error_msg:
                self.logger.log(
                    "[bold red]Warning to user: Code execution failed due to an unauthorized import - Consider passing said import under `additional_authorized_imports` when initializing your CodeAgent.",
                    level=LogLevel.INFO,
                )
            raise AgentExecutionError(error_msg, self.logger)

        truncated_output = truncate_content(str(output))
        observation += "Last output from code snippet:\n" + truncated_output
        memory_step.observations = observation

        if not is_final_answer:
            execution_outputs_console += [
                Text(
                    f"Out: {truncated_output}",
                ),
            ]
        self.logger.log(Group(*execution_outputs_console), level=LogLevel.INFO)
        memory_step.action_output = output
        yield ActionOutput(output=output, is_final_answer=is_final_answer)

    def to_dict(self) -> dict[str, Any]:
        """Convert the agent to a dictionary representation.

        Returns:
            `dict`: Dictionary representation of the agent.
        """
        agent_dict = super().to_dict()
        agent_dict["authorized_imports"] = self.authorized_imports
        agent_dict["executor_type"] = self.executor_type
        agent_dict["executor_kwargs"] = self.executor_kwargs
        agent_dict["max_print_outputs_length"] = self.max_print_outputs_length
        return agent_dict

    @classmethod
    def from_dict(cls, agent_dict: dict[str, Any], **kwargs) -> "CodeAgent":
        """Create CodeAgent from a dictionary representation.

        Args:
            agent_dict (`dict[str, Any]`): Dictionary representation of the agent.
            **kwargs: Additional keyword arguments that will override agent_dict values.

        Returns:
            `CodeAgent`: Instance of the CodeAgent class.
        """
        # Add CodeAgent-specific parameters to kwargs
        code_agent_kwargs = {
            "additional_authorized_imports": agent_dict.get("authorized_imports"),
            "executor_type": agent_dict.get("executor_type"),
            "executor_kwargs": agent_dict.get("executor_kwargs"),
            "max_print_outputs_length": agent_dict.get("max_print_outputs_length"),
        }
        # Filter out None values
        code_agent_kwargs = {k: v for k, v in code_agent_kwargs.items() if v is not None}
        # Update with any additional kwargs
        code_agent_kwargs.update(kwargs)
        # Call the parent class's from_dict method
        return super().from_dict(agent_dict, **code_agent_kwargs)