File size: 5,037 Bytes
d7949de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from dotenv import load_dotenv
from smolagents import CodeAgent, InferenceClientModel, LiteLLMModel, Model, OpenAIServerModel, Tool, TransformersModel
from smolagents.default_tools import TOOL_MAPPING
leopard_prompt = "How many seconds would it take for a leopard at full speed to run through Pont des Arts?"
def parse_arguments():
parser = argparse.ArgumentParser(description="Run a CodeAgent with all specified parameters")
parser.add_argument(
"prompt",
type=str,
nargs="?", # Makes it optional
default=leopard_prompt,
help="The prompt to run with the agent",
)
parser.add_argument(
"--model-type",
type=str,
default="InferenceClientModel",
help="The model type to use (e.g., InferenceClientModel, OpenAIServerModel, LiteLLMModel, TransformersModel)",
)
parser.add_argument(
"--model-id",
type=str,
default="Qwen/Qwen2.5-Coder-32B-Instruct",
help="The model ID to use for the specified model type",
)
parser.add_argument(
"--imports",
nargs="*", # accepts zero or more arguments
default=[],
help="Space-separated list of imports to authorize (e.g., 'numpy pandas')",
)
parser.add_argument(
"--tools",
nargs="*",
default=["web_search"],
help="Space-separated list of tools that the agent can use (e.g., 'tool1 tool2 tool3')",
)
parser.add_argument(
"--verbosity-level",
type=int,
default=1,
help="The verbosity level, as an int in [0, 1, 2].",
)
group = parser.add_argument_group("api options", "Options for API-based model types")
group.add_argument(
"--provider",
type=str,
default=None,
help="The inference provider to use for the model",
)
group.add_argument(
"--api-base",
type=str,
help="The base URL for the model",
)
group.add_argument(
"--api-key",
type=str,
help="The API key for the model",
)
return parser.parse_args()
def load_model(
model_type: str,
model_id: str,
api_base: str | None = None,
api_key: str | None = None,
provider: str | None = None,
) -> Model:
if model_type == "OpenAIServerModel":
return OpenAIServerModel(
api_key=api_key or os.getenv("FIREWORKS_API_KEY"),
api_base=api_base or "https://api.fireworks.ai/inference/v1",
model_id=model_id,
)
elif model_type == "LiteLLMModel":
return LiteLLMModel(
model_id=model_id,
api_key=api_key,
api_base=api_base,
)
elif model_type == "TransformersModel":
return TransformersModel(model_id=model_id, device_map="auto")
elif model_type == "InferenceClientModel":
return InferenceClientModel(
model_id=model_id,
token=api_key or os.getenv("HF_API_KEY"),
provider=provider,
)
else:
raise ValueError(f"Unsupported model type: {model_type}")
def run_smolagent(
prompt: str,
tools: list[str],
model_type: str,
model_id: str,
api_base: str | None = None,
api_key: str | None = None,
imports: list[str] | None = None,
provider: str | None = None,
) -> None:
load_dotenv()
model = load_model(model_type, model_id, api_base=api_base, api_key=api_key, provider=provider)
available_tools = []
for tool_name in tools:
if "/" in tool_name:
available_tools.append(Tool.from_space(tool_name))
else:
if tool_name in TOOL_MAPPING:
available_tools.append(TOOL_MAPPING[tool_name]())
else:
raise ValueError(f"Tool {tool_name} is not recognized either as a default tool or a Space.")
print(f"Running agent with these tools: {tools}")
agent = CodeAgent(tools=available_tools, model=model, additional_authorized_imports=imports)
agent.run(prompt)
def main() -> None:
args = parse_arguments()
run_smolagent(
args.prompt,
args.tools,
args.model_type,
args.model_id,
provider=args.provider,
api_base=args.api_base,
api_key=args.api_key,
imports=args.imports,
)
if __name__ == "__main__":
main()
|