File size: 21,451 Bytes
d7949de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any
from .local_python_executor import (
BASE_BUILTIN_MODULES,
BASE_PYTHON_TOOLS,
evaluate_python_code,
)
from .tools import PipelineTool, Tool
@dataclass
class PreTool:
name: str
inputs: dict[str, str]
output_type: type
task: str
description: str
repo_id: str
class PythonInterpreterTool(Tool):
name = "python_interpreter"
description = "This is a tool that evaluates python code. It can be used to perform calculations."
inputs = {
"code": {
"type": "string",
"description": "The python code to run in interpreter",
}
}
output_type = "string"
def __init__(self, *args, authorized_imports=None, **kwargs):
if authorized_imports is None:
self.authorized_imports = list(set(BASE_BUILTIN_MODULES))
else:
self.authorized_imports = list(set(BASE_BUILTIN_MODULES) | set(authorized_imports))
self.inputs = {
"code": {
"type": "string",
"description": (
"The code snippet to evaluate. All variables used in this snippet must be defined in this same snippet, "
f"else you will get an error. This code can only import the following python libraries: {self.authorized_imports}."
),
}
}
self.base_python_tools = BASE_PYTHON_TOOLS
self.python_evaluator = evaluate_python_code
super().__init__(*args, **kwargs)
def forward(self, code: str) -> str:
state = {}
output = str(
self.python_evaluator(
code,
state=state,
static_tools=self.base_python_tools,
authorized_imports=self.authorized_imports,
)[0] # The second element is boolean is_final_answer
)
return f"Stdout:\n{str(state['_print_outputs'])}\nOutput: {output}"
class FinalAnswerTool(Tool):
name = "final_answer"
description = "Provides a final answer to the given problem."
inputs = {"answer": {"type": "any", "description": "The final answer to the problem"}}
output_type = "any"
def forward(self, answer: Any) -> Any:
return answer
class UserInputTool(Tool):
name = "user_input"
description = "Asks for user's input on a specific question"
inputs = {"question": {"type": "string", "description": "The question to ask the user"}}
output_type = "string"
def forward(self, question):
user_input = input(f"{question} => Type your answer here:")
return user_input
class DuckDuckGoSearchTool(Tool):
name = "web_search"
description = """Performs a duckduckgo web search based on your query (think a Google search) then returns the top search results."""
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "string"
def __init__(self, max_results=10, **kwargs):
super().__init__()
self.max_results = max_results
try:
from duckduckgo_search import DDGS
except ImportError as e:
raise ImportError(
"You must install package `duckduckgo_search` to run this tool: for instance run `pip install duckduckgo-search`."
) from e
self.ddgs = DDGS(**kwargs)
def forward(self, query: str) -> str:
results = self.ddgs.text(query, max_results=self.max_results)
if len(results) == 0:
raise Exception("No results found! Try a less restrictive/shorter query.")
postprocessed_results = [f"[{result['title']}]({result['href']})\n{result['body']}" for result in results]
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
class GoogleSearchTool(Tool):
name = "web_search"
description = """Performs a google web search for your query then returns a string of the top search results."""
inputs = {
"query": {"type": "string", "description": "The search query to perform."},
"filter_year": {
"type": "integer",
"description": "Optionally restrict results to a certain year",
"nullable": True,
},
}
output_type = "string"
def __init__(self, provider: str = "serpapi"):
super().__init__()
import os
self.provider = provider
if provider == "serpapi":
self.organic_key = "organic_results"
api_key_env_name = "SERPAPI_API_KEY"
else:
self.organic_key = "organic"
api_key_env_name = "SERPER_API_KEY"
self.api_key = os.getenv(api_key_env_name)
if self.api_key is None:
raise ValueError(f"Missing API key. Make sure you have '{api_key_env_name}' in your env variables.")
def forward(self, query: str, filter_year: int | None = None) -> str:
import requests
if self.provider == "serpapi":
params = {
"q": query,
"api_key": self.api_key,
"engine": "google",
"google_domain": "google.com",
}
base_url = "https://serpapi.com/search.json"
else:
params = {
"q": query,
"api_key": self.api_key,
}
base_url = "https://google.serper.dev/search"
if filter_year is not None:
params["tbs"] = f"cdr:1,cd_min:01/01/{filter_year},cd_max:12/31/{filter_year}"
response = requests.get(base_url, params=params)
if response.status_code == 200:
results = response.json()
else:
raise ValueError(response.json())
if self.organic_key not in results.keys():
if filter_year is not None:
raise Exception(
f"No results found for query: '{query}' with filtering on year={filter_year}. Use a less restrictive query or do not filter on year."
)
else:
raise Exception(f"No results found for query: '{query}'. Use a less restrictive query.")
if len(results[self.organic_key]) == 0:
year_filter_message = f" with filter year={filter_year}" if filter_year is not None else ""
return f"No results found for '{query}'{year_filter_message}. Try with a more general query, or remove the year filter."
web_snippets = []
if self.organic_key in results:
for idx, page in enumerate(results[self.organic_key]):
date_published = ""
if "date" in page:
date_published = "\nDate published: " + page["date"]
source = ""
if "source" in page:
source = "\nSource: " + page["source"]
snippet = ""
if "snippet" in page:
snippet = "\n" + page["snippet"]
redacted_version = f"{idx}. [{page['title']}]({page['link']}){date_published}{source}\n{snippet}"
web_snippets.append(redacted_version)
return "## Search Results\n" + "\n\n".join(web_snippets)
class ApiWebSearchTool(Tool):
name = "web_search"
description = "Performs a web search for a query and returns a string of the top search results formatted as markdown with titles, URLs, and descriptions."
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "string"
def __init__(
self, endpoint: str = "", api_key: str = "", api_key_name: str = "", headers: dict = None, params: dict = None
):
import os
super().__init__()
self.endpoint = endpoint or "https://api.search.brave.com/res/v1/web/search"
self.api_key = api_key or os.getenv(api_key_name)
self.headers = headers or {"X-Subscription-Token": self.api_key}
self.params = params or {"count": 10}
def forward(self, query: str) -> str:
import requests
params = {**self.params, "q": query}
response = requests.get(self.endpoint, headers=self.headers, params=params)
response.raise_for_status()
data = response.json()
results = self.extract_results(data)
return self.format_markdown(results)
def extract_results(self, data: dict) -> list:
results = []
for result in data.get("web", {}).get("results", []):
results.append(
{"title": result["title"], "url": result["url"], "description": result.get("description", "")}
)
return results
def format_markdown(self, results: list) -> str:
if not results:
return "No results found."
return "## Search Results\n\n" + "\n\n".join(
[
f"{idx}. [{result['title']}]({result['url']})\n{result['description']}"
for idx, result in enumerate(results, start=1)
]
)
class WebSearchTool(Tool):
name = "web_search"
description = "Performs a web search for a query and returns a string of the top search results formatted as markdown with titles, links, and descriptions."
inputs = {"query": {"type": "string", "description": "The search query to perform."}}
output_type = "string"
def __init__(self, max_results: int = 10, engine: str = "duckduckgo"):
super().__init__()
self.max_results = max_results
self.engine = engine
def forward(self, query: str) -> str:
results = self.search(query)
if len(results) == 0:
raise Exception("No results found! Try a less restrictive/shorter query.")
return self.parse_results(results)
def search(self, query: str) -> list:
if self.engine == "duckduckgo":
return self.search_duckduckgo(query)
elif self.engine == "bing":
return self.search_bing(query)
else:
raise ValueError(f"Unsupported engine: {self.engine}")
def parse_results(self, results: list) -> str:
return "## Search Results\n\n" + "\n\n".join(
[f"[{result['title']}]({result['link']})\n{result['description']}" for result in results]
)
def search_duckduckgo(self, query: str) -> list:
import requests
response = requests.get(
"https://lite.duckduckgo.com/lite/",
params={"q": query},
headers={"User-Agent": "Mozilla/5.0"},
)
response.raise_for_status()
parser = self._create_duckduckgo_parser()
parser.feed(response.text)
return parser.results
def _create_duckduckgo_parser(self):
from html.parser import HTMLParser
class SimpleResultParser(HTMLParser):
def __init__(self):
super().__init__()
self.results = []
self.current = {}
self.capture_title = False
self.capture_description = False
self.capture_link = False
def handle_starttag(self, tag, attrs):
attrs = dict(attrs)
if tag == "a" and attrs.get("class") == "result-link":
self.capture_title = True
elif tag == "td" and attrs.get("class") == "result-snippet":
self.capture_description = True
elif tag == "span" and attrs.get("class") == "link-text":
self.capture_link = True
def handle_endtag(self, tag):
if tag == "a" and self.capture_title:
self.capture_title = False
elif tag == "td" and self.capture_description:
self.capture_description = False
elif tag == "span" and self.capture_link:
self.capture_link = False
elif tag == "tr":
# Store current result if all parts are present
if {"title", "description", "link"} <= self.current.keys():
self.current["description"] = " ".join(self.current["description"])
self.results.append(self.current)
self.current = {}
def handle_data(self, data):
if self.capture_title:
self.current["title"] = data.strip()
elif self.capture_description:
self.current.setdefault("description", [])
self.current["description"].append(data.strip())
elif self.capture_link:
self.current["link"] = "https://" + data.strip()
return SimpleResultParser()
def search_bing(self, query: str) -> list:
import xml.etree.ElementTree as ET
import requests
response = requests.get(
"https://www.bing.com/search",
params={"q": query, "format": "rss"},
)
response.raise_for_status()
root = ET.fromstring(response.text)
items = root.findall(".//item")
results = [
{
"title": item.findtext("title"),
"link": item.findtext("link"),
"description": item.findtext("description"),
}
for item in items[: self.max_results]
]
return results
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = (
"Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
)
inputs = {
"url": {
"type": "string",
"description": "The url of the webpage to visit.",
}
}
output_type = "string"
def __init__(self, max_output_length: int = 40000):
super().__init__()
self.max_output_length = max_output_length
def _truncate_content(self, content: str, max_length: int) -> str:
if len(content) <= max_length:
return content
return (
content[: max_length // 2]
+ f"\n..._This content has been truncated to stay below {max_length} characters_...\n"
+ content[-max_length // 2 :]
)
def forward(self, url: str) -> str:
try:
import re
import requests
from markdownify import markdownify
from requests.exceptions import RequestException
except ImportError as e:
raise ImportError(
"You must install packages `markdownify` and `requests` to run this tool: for instance run `pip install markdownify requests`."
) from e
try:
# Send a GET request to the URL with a 20-second timeout
response = requests.get(url, timeout=20)
response.raise_for_status() # Raise an exception for bad status codes
# Convert the HTML content to Markdown
markdown_content = markdownify(response.text).strip()
# Remove multiple line breaks
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
return self._truncate_content(markdown_content, self.max_output_length)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
class WikipediaSearchTool(Tool):
"""
WikipediaSearchTool searches Wikipedia and returns a summary or full text of the given topic, along with the page URL.
Attributes:
user_agent (str): A custom user-agent string to identify the project. This is required as per Wikipedia API policies, read more here: http://github.com/martin-majlis/Wikipedia-API/blob/master/README.rst
language (str): The language in which to retrieve Wikipedia articles.
http://meta.wikimedia.org/wiki/List_of_Wikipedias
content_type (str): Defines the content to fetch. Can be "summary" for a short summary or "text" for the full article.
extract_format (str): Defines the output format. Can be `"WIKI"` or `"HTML"`.
Example:
>>> from smolagents import CodeAgent, InferenceClientModel, WikipediaSearchTool
>>> agent = CodeAgent(
>>> tools=[
>>> WikipediaSearchTool(
>>> user_agent="MyResearchBot ([email protected])",
>>> language="en",
>>> content_type="summary", # or "text"
>>> extract_format="WIKI",
>>> )
>>> ],
>>> model=InferenceClientModel(),
>>> )
>>> agent.run("Python_(programming_language)")
"""
name = "wikipedia_search"
description = "Searches Wikipedia and returns a summary or full text of the given topic, along with the page URL."
inputs = {
"query": {
"type": "string",
"description": "The topic to search on Wikipedia.",
}
}
output_type = "string"
def __init__(
self,
user_agent: str = "Smolagents ([email protected])",
language: str = "en",
content_type: str = "text",
extract_format: str = "WIKI",
):
super().__init__()
try:
import wikipediaapi
except ImportError as e:
raise ImportError(
"You must install `wikipedia-api` to run this tool: for instance run `pip install wikipedia-api`"
) from e
if not user_agent:
raise ValueError("User-agent is required. Provide a meaningful identifier for your project.")
self.user_agent = user_agent
self.language = language
self.content_type = content_type
# Map string format to wikipediaapi.ExtractFormat
extract_format_map = {
"WIKI": wikipediaapi.ExtractFormat.WIKI,
"HTML": wikipediaapi.ExtractFormat.HTML,
}
if extract_format not in extract_format_map:
raise ValueError("Invalid extract_format. Choose between 'WIKI' or 'HTML'.")
self.extract_format = extract_format_map[extract_format]
self.wiki = wikipediaapi.Wikipedia(
user_agent=self.user_agent, language=self.language, extract_format=self.extract_format
)
def forward(self, query: str) -> str:
try:
page = self.wiki.page(query)
if not page.exists():
return f"No Wikipedia page found for '{query}'. Try a different query."
title = page.title
url = page.fullurl
if self.content_type == "summary":
text = page.summary
elif self.content_type == "text":
text = page.text
else:
return "⚠️ Invalid `content_type`. Use either 'summary' or 'text'."
return f"✅ **Wikipedia Page:** {title}\n\n**Content:** {text}\n\n🔗 **Read more:** {url}"
except Exception as e:
return f"Error fetching Wikipedia summary: {str(e)}"
class SpeechToTextTool(PipelineTool):
default_checkpoint = "openai/whisper-large-v3-turbo"
description = "This is a tool that transcribes an audio into text. It returns the transcribed text."
name = "transcriber"
inputs = {
"audio": {
"type": "audio",
"description": "The audio to transcribe. Can be a local path, an url, or a tensor.",
}
}
output_type = "string"
def __new__(cls, *args, **kwargs):
from transformers.models.whisper import WhisperForConditionalGeneration, WhisperProcessor
cls.pre_processor_class = WhisperProcessor
cls.model_class = WhisperForConditionalGeneration
return super().__new__(cls)
def encode(self, audio):
from .agent_types import AgentAudio
audio = AgentAudio(audio).to_raw()
return self.pre_processor(audio, return_tensors="pt")
def forward(self, inputs):
return self.model.generate(inputs["input_features"])
def decode(self, outputs):
return self.pre_processor.batch_decode(outputs, skip_special_tokens=True)[0]
TOOL_MAPPING = {
tool_class.name: tool_class
for tool_class in [
PythonInterpreterTool,
DuckDuckGoSearchTool,
VisitWebpageTool,
]
}
__all__ = [
"ApiWebSearchTool",
"PythonInterpreterTool",
"FinalAnswerTool",
"UserInputTool",
"WebSearchTool",
"DuckDuckGoSearchTool",
"GoogleSearchTool",
"VisitWebpageTool",
"WikipediaSearchTool",
"SpeechToTextTool",
]
|