File size: 21,149 Bytes
d7949de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
import shutil
from pathlib import Path
from typing import Generator
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import MultiStepAgent, PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta, MessageRole, agglomerate_stream_deltas
from smolagents.utils import _is_package_available
def get_step_footnote_content(step_log: ActionStep | PlanningStep, step_name: str) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if step_log.token_usage is not None:
step_footnote += f" | Input tokens: {step_log.token_usage.input_tokens:,} | Output tokens: {step_log.token_usage.output_tokens:,}"
step_footnote += f" | Duration: {round(float(step_log.timing.duration), 2)}s" if step_log.timing.duration else ""
step_footnote_content = f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
return step_footnote_content
def _clean_model_output(model_output: str) -> str:
"""
Clean up model output by removing trailing tags and extra backticks.
Args:
model_output (`str`): Raw model output.
Returns:
`str`: Cleaned model output.
"""
if not model_output:
return ""
model_output = model_output.strip()
# Remove any trailing <end_code> and extra backticks, handling multiple possible formats
model_output = re.sub(r"```\s*<end_code>", "```", model_output) # handles ```<end_code>
model_output = re.sub(r"<end_code>\s*```", "```", model_output) # handles <end_code>```
model_output = re.sub(r"```\s*\n\s*<end_code>", "```", model_output) # handles ```\n<end_code>
return model_output.strip()
def _format_code_content(content: str) -> str:
"""
Format code content as Python code block if it's not already formatted.
Args:
content (`str`): Code content to format.
Returns:
`str`: Code content formatted as a Python code block.
"""
content = content.strip()
# Remove existing code blocks and end_code tags
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
# Add Python code block formatting if not already present
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
return content
def _process_action_step(step_log: ActionStep, skip_model_outputs: bool = False) -> Generator:
"""
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
Args:
step_log ([`ActionStep`]): ActionStep to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
"""
import gradio as gr
# Output the step number
step_number = f"Step {step_log.step_number}"
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=f"**{step_number}**", metadata={"status": "done"})
# First yield the thought/reasoning from the LLM
if not skip_model_outputs and getattr(step_log, "model_output", ""):
model_output = _clean_model_output(step_log.model_output)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=model_output, metadata={"status": "done"})
# For tool calls, create a parent message
if getattr(step_log, "tool_calls", []):
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Process arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
# Format code content if needed
if used_code:
content = _format_code_content(content)
# Create the tool call message
parent_message_tool = gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
},
)
yield parent_message_tool
# Display execution logs if they exist
if getattr(step_log, "observations", "") and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"```bash\n{log_content}\n",
metadata={"title": "📝 Execution Logs", "status": "done"},
)
# Display any images in observations
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": path_image, "mime_type": f"image/{path_image.split('.')[-1]}"},
metadata={"title": "🖼️ Output Image", "status": "done"},
)
# Handle errors
if getattr(step_log, "error", None):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=str(step_log.error), metadata={"title": "💥 Error", "status": "done"}
)
# Add step footnote and separator
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, step_number),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_planning_step(step_log: PlanningStep, skip_model_outputs: bool = False) -> Generator:
"""
Process a [`PlanningStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`PlanningStep`]): PlanningStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the planning step.
"""
import gradio as gr
if not skip_model_outputs:
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="**Planning step**", metadata={"status": "done"})
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content=step_log.plan, metadata={"status": "done"})
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=get_step_footnote_content(step_log, "Planning step"),
metadata={"status": "done"},
)
yield gr.ChatMessage(role=MessageRole.ASSISTANT, content="-----", metadata={"status": "done"})
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
"""
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
"""
import gradio as gr
final_answer = step_log.output
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role=MessageRole.ASSISTANT,
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role=MessageRole.ASSISTANT, content=f"**Final answer:** {str(final_answer)}", metadata={"status": "done"}
)
def pull_messages_from_step(step_log: ActionStep | PlanningStep | FinalAnswerStep, skip_model_outputs: bool = False):
"""Extract Gradio ChatMessage objects from agent steps with proper nesting.
Args:
step_log: The step log to display as gr.ChatMessage objects.
skip_model_outputs: If True, skip the model outputs when creating the gr.ChatMessage objects:
This is used for instance when streaming model outputs have already been displayed.
"""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
if isinstance(step_log, ActionStep):
yield from _process_action_step(step_log, skip_model_outputs)
elif isinstance(step_log, PlanningStep):
yield from _process_planning_step(step_log, skip_model_outputs)
elif isinstance(step_log, FinalAnswerStep):
yield from _process_final_answer_step(step_log)
else:
raise ValueError(f"Unsupported step type: {type(step_log)}")
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
) -> Generator:
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
accumulated_events: list[ChatMessageStreamDelta] = []
for event in agent.run(
task, images=task_images, stream=True, reset=reset_agent_memory, additional_args=additional_args
):
if isinstance(event, ActionStep | PlanningStep | FinalAnswerStep):
for message in pull_messages_from_step(
event,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
):
yield message
accumulated_events = []
elif isinstance(event, ChatMessageStreamDelta):
accumulated_events.append(event)
text = agglomerate_stream_deltas(accumulated_events).render_as_markdown()
yield text
class GradioUI:
"""
Gradio interface for interacting with a [`MultiStepAgent`].
This class provides a web interface to interact with the agent in real-time, allowing users to submit prompts, upload files, and receive responses in a chat-like format.
It can reset the agent's memory at the start of each interaction if desired.
It supports file uploads, which are saved to a specified folder.
It uses the [`gradio.Chatbot`] component to display the conversation history.
This class requires the `gradio` extra to be installed: `smolagents[gradio]`.
Args:
agent ([`MultiStepAgent`]): The agent to interact with.
file_upload_folder (`str`, *optional*): The folder where uploaded files will be saved.
If not provided, file uploads are disabled.
reset_agent_memory (`bool`, *optional*, defaults to `False`): Whether to reset the agent's memory at the start of each interaction.
If `True`, the agent will not remember previous interactions.
Raises:
ModuleNotFoundError: If the `gradio` extra is not installed.
Example:
```python
from smolagents import CodeAgent, GradioUI, InferenceClientModel
model = InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
agent = CodeAgent(tools=[], model=model)
gradio_ui = GradioUI(agent, file_upload_folder="uploads", reset_agent_memory=True)
gradio_ui.launch()
```
"""
def __init__(self, agent: MultiStepAgent, file_upload_folder: str | None = None, reset_agent_memory: bool = False):
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: `pip install 'smolagents[gradio]'`"
)
self.agent = agent
self.file_upload_folder = Path(file_upload_folder) if file_upload_folder is not None else None
self.reset_agent_memory = reset_agent_memory
self.name = getattr(agent, "name") or "Agent interface"
self.description = getattr(agent, "description", None)
if self.file_upload_folder is not None:
if not self.file_upload_folder.exists():
self.file_upload_folder.mkdir(parents=True, exist_ok=True)
def interact_with_agent(self, prompt, messages, session_state):
import gradio as gr
# Get the agent type from the template agent
if "agent" not in session_state:
session_state["agent"] = self.agent
try:
messages.append(gr.ChatMessage(role="user", content=prompt, metadata={"status": "done"}))
yield messages
for msg in stream_to_gradio(
session_state["agent"], task=prompt, reset_agent_memory=self.reset_agent_memory
):
if isinstance(msg, gr.ChatMessage):
messages[-1].metadata["status"] = "done"
messages.append(msg)
elif isinstance(msg, str): # Then it's only a completion delta
msg = msg.replace("<", r"\<").replace(">", r"\>") # HTML tags seem to break Gradio Chatbot
if messages[-1].metadata["status"] == "pending":
messages[-1].content = msg
else:
messages.append(
gr.ChatMessage(role=MessageRole.ASSISTANT, content=msg, metadata={"status": "pending"})
)
yield messages
yield messages
except Exception as e:
yield messages
raise gr.Error(f"Error in interaction: {str(e)}")
def upload_file(self, file, file_uploads_log, allowed_file_types=None):
"""
Upload a file and add it to the list of uploaded files in the session state.
The file is saved to the `self.file_upload_folder` folder.
If the file type is not allowed, it returns a message indicating the disallowed file type.
Args:
file (`gradio.File`): The uploaded file.
file_uploads_log (`list`): A list to log uploaded files.
allowed_file_types (`list`, *optional*): List of allowed file extensions. Defaults to [".pdf", ".docx", ".txt"].
"""
import gradio as gr
if file is None:
return gr.Textbox(value="No file uploaded", visible=True), file_uploads_log
if allowed_file_types is None:
allowed_file_types = [".pdf", ".docx", ".txt"]
file_ext = os.path.splitext(file.name)[1].lower()
if file_ext not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
import gradio as gr
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
gr.Button(interactive=False),
)
def launch(self, share: bool = True, **kwargs):
"""
Launch the Gradio app with the agent interface.
Args:
share (`bool`, defaults to `True`): Whether to share the app publicly.
**kwargs: Additional keyword arguments to pass to the Gradio launch method.
"""
self.create_app().launch(debug=True, share=share, **kwargs)
def create_app(self):
import gradio as gr
with gr.Blocks(theme="ocean", fill_height=True) as demo:
# Add session state to store session-specific data
session_state = gr.State({})
stored_messages = gr.State([])
file_uploads_log = gr.State([])
with gr.Sidebar():
gr.Markdown(
f"# {self.name.replace('_', ' ').capitalize()}"
"\n> This web ui allows you to interact with a `smolagents` agent that can use tools and execute steps to complete tasks."
+ (f"\n\n**Agent description:**\n{self.description}" if self.description else "")
)
with gr.Group():
gr.Markdown("**Your request**", container=True)
text_input = gr.Textbox(
lines=3,
label="Chat Message",
container=False,
placeholder="Enter your prompt here and press Shift+Enter or press the button",
)
submit_btn = gr.Button("Submit", variant="primary")
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
gr.HTML(
"<br><br><h4><center>Powered by <a target='_blank' href='https://github.com/huggingface/smolagents'><b>smolagents</b></a></center></h4>"
)
# Main chat interface
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
latex_delimiters=[
{"left": r"$$", "right": r"$$", "display": True},
{"left": r"$", "right": r"$", "display": False},
{"left": r"\[", "right": r"\]", "display": True},
{"left": r"\(", "right": r"\)", "display": False},
],
)
# Set up event handlers
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
submit_btn.click(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input, submit_btn],
).then(self.interact_with_agent, [stored_messages, chatbot, session_state], [chatbot]).then(
lambda: (
gr.Textbox(
interactive=True, placeholder="Enter your prompt here and press Shift+Enter or the button"
),
gr.Button(interactive=True),
),
None,
[text_input, submit_btn],
)
return demo
__all__ = ["stream_to_gradio", "GradioUI"]
|