File size: 77,180 Bytes
d7949de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import os
import re
import uuid
import warnings
from collections.abc import Generator
from copy import deepcopy
from dataclasses import asdict, dataclass
from enum import Enum
from threading import Thread
from typing import TYPE_CHECKING, Any
from .monitoring import TokenUsage
from .tools import Tool
from .utils import _is_package_available, encode_image_base64, make_image_url, parse_json_blob
if TYPE_CHECKING:
from transformers import StoppingCriteriaList
logger = logging.getLogger(__name__)
STRUCTURED_GENERATION_PROVIDERS = ["cerebras", "fireworks-ai"]
CODEAGENT_RESPONSE_FORMAT = {
"type": "json_schema",
"json_schema": {
"schema": {
"additionalProperties": False,
"properties": {
"thought": {
"description": "A free form text description of the thought process.",
"title": "Thought",
"type": "string",
},
"code": {
"description": "Valid Python code snippet implementing the thought.",
"title": "Code",
"type": "string",
},
},
"required": ["thought", "code"],
"title": "ThoughtAndCodeAnswer",
"type": "object",
},
"name": "ThoughtAndCodeAnswer",
"strict": True,
},
}
def get_dict_from_nested_dataclasses(obj, ignore_key=None):
def convert(obj):
if hasattr(obj, "__dataclass_fields__"):
return {k: convert(v) for k, v in asdict(obj).items() if k != ignore_key}
return obj
return convert(obj)
@dataclass
class ChatMessageToolCallFunction:
arguments: Any
name: str
description: str | None = None
@dataclass
class ChatMessageToolCall:
function: ChatMessageToolCallFunction
id: str
type: str
def __str__(self) -> str:
return f"Call: {self.id}: Calling {str(self.function.name)} with arguments: {str(self.function.arguments)}"
class MessageRole(str, Enum):
USER = "user"
ASSISTANT = "assistant"
SYSTEM = "system"
TOOL_CALL = "tool-call"
TOOL_RESPONSE = "tool-response"
@classmethod
def roles(cls):
return [r.value for r in cls]
@dataclass
class ChatMessage:
role: MessageRole
content: str | list[dict[str, Any]] | None = None
tool_calls: list[ChatMessageToolCall] | None = None
raw: Any | None = None # Stores the raw output from the API
token_usage: TokenUsage | None = None
def model_dump_json(self):
return json.dumps(get_dict_from_nested_dataclasses(self, ignore_key="raw"))
@classmethod
def from_dict(cls, data: dict, raw: Any | None = None, token_usage: TokenUsage | None = None) -> "ChatMessage":
if data.get("tool_calls"):
tool_calls = [
ChatMessageToolCall(
function=ChatMessageToolCallFunction(**tc["function"]), id=tc["id"], type=tc["type"]
)
for tc in data["tool_calls"]
]
data["tool_calls"] = tool_calls
return cls(
role=data["role"],
content=data.get("content"),
tool_calls=data.get("tool_calls"),
raw=raw,
token_usage=token_usage,
)
def dict(self):
return get_dict_from_nested_dataclasses(self)
def render_as_markdown(self) -> str:
rendered = str(self.content) or ""
if self.tool_calls:
rendered += "\n".join(
[
json.dumps({"tool": tool.function.name, "arguments": tool.function.arguments})
for tool in self.tool_calls
]
)
return rendered
def parse_json_if_needed(arguments: str | dict) -> str | dict:
if isinstance(arguments, dict):
return arguments
else:
try:
return json.loads(arguments)
except Exception:
return arguments
@dataclass
class ChatMessageToolCallStreamDelta:
"""Represents a streaming delta for tool calls during generation."""
index: int | None = None
id: str | None = None
type: str | None = None
function: ChatMessageToolCallFunction | None = None
@dataclass
class ChatMessageStreamDelta:
content: str | None = None
tool_calls: list[ChatMessageToolCallStreamDelta] | None = None
token_usage: TokenUsage | None = None
def agglomerate_stream_deltas(
stream_deltas: list[ChatMessageStreamDelta], role: MessageRole = MessageRole.ASSISTANT
) -> ChatMessage:
"""
Agglomerate a list of stream deltas into a single stream delta.
"""
accumulated_tool_calls: dict[int, ChatMessageToolCallStreamDelta] = {}
accumulated_content = ""
total_input_tokens = 0
total_output_tokens = 0
for stream_delta in stream_deltas:
if stream_delta.token_usage:
total_input_tokens += stream_delta.token_usage.input_tokens
total_output_tokens += stream_delta.token_usage.output_tokens
if stream_delta.content:
accumulated_content += stream_delta.content
if stream_delta.tool_calls:
for tool_call_delta in stream_delta.tool_calls: # ?ormally there should be only one call at a time
# Extend accumulated_tool_calls list to accommodate the new tool call if needed
if tool_call_delta.index is not None:
if tool_call_delta.index not in accumulated_tool_calls:
accumulated_tool_calls[tool_call_delta.index] = ChatMessageToolCallStreamDelta(
id=tool_call_delta.id,
type=tool_call_delta.type,
function=ChatMessageToolCallFunction(name="", arguments=""),
)
# Update the tool call at the specific index
tool_call = accumulated_tool_calls[tool_call_delta.index]
if tool_call_delta.id:
tool_call.id = tool_call_delta.id
if tool_call_delta.type:
tool_call.type = tool_call_delta.type
if tool_call_delta.function:
if tool_call_delta.function.name and len(tool_call_delta.function.name) > 0:
tool_call.function.name = tool_call_delta.function.name
if tool_call_delta.function.arguments:
tool_call.function.arguments += tool_call_delta.function.arguments
else:
raise ValueError(f"Tool call index is not provided in tool delta: {tool_call_delta}")
return ChatMessage(
role=role,
content=accumulated_content,
tool_calls=[
ChatMessageToolCall(
function=ChatMessageToolCallFunction(
name=tool_call_stream_delta.function.name,
arguments=tool_call_stream_delta.function.arguments,
),
id=tool_call_stream_delta.id or "",
type="function",
)
for tool_call_stream_delta in accumulated_tool_calls.values()
if tool_call_stream_delta.function
],
token_usage=TokenUsage(
input_tokens=total_input_tokens,
output_tokens=total_output_tokens,
),
)
tool_role_conversions = {
MessageRole.TOOL_CALL: MessageRole.ASSISTANT,
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
def get_tool_json_schema(tool: Tool) -> dict:
properties = deepcopy(tool.inputs)
required = []
for key, value in properties.items():
if value["type"] == "any":
value["type"] = "string"
if not ("nullable" in value and value["nullable"]):
required.append(key)
return {
"type": "function",
"function": {
"name": tool.name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": properties,
"required": required,
},
},
}
def remove_stop_sequences(content: str, stop_sequences: list[str]) -> str:
for stop_seq in stop_sequences:
if content[-len(stop_seq) :] == stop_seq:
content = content[: -len(stop_seq)]
return content
def get_clean_message_list(
message_list: list[ChatMessage],
role_conversions: dict[MessageRole, MessageRole] | dict[str, str] = {},
convert_images_to_image_urls: bool = False,
flatten_messages_as_text: bool = False,
) -> list[dict[str, Any]]:
"""
Creates a list of messages to give as input to the LLM. These messages are dictionaries and chat template compatible with transformers LLM chat template.
Subsequent messages with the same role will be concatenated to a single message.
Args:
message_list (`list[dict[str, str]]`): List of chat messages.
role_conversions (`dict[MessageRole, MessageRole]`, *optional* ): Mapping to convert roles.
convert_images_to_image_urls (`bool`, default `False`): Whether to convert images to image URLs.
flatten_messages_as_text (`bool`, default `False`): Whether to flatten messages as text.
"""
output_message_list: list[dict[str, Any]] = []
message_list = deepcopy(message_list) # Avoid modifying the original list
for message in message_list:
role = message.role
if role not in MessageRole.roles():
raise ValueError(f"Incorrect role {role}, only {MessageRole.roles()} are supported for now.")
if role in role_conversions:
message.role = role_conversions[role] # type: ignore
# encode images if needed
if isinstance(message.content, list):
for element in message.content:
assert isinstance(element, dict), "Error: this element should be a dict:" + str(element)
if element["type"] == "image":
assert not flatten_messages_as_text, f"Cannot use images with {flatten_messages_as_text=}"
if convert_images_to_image_urls:
element.update(
{
"type": "image_url",
"image_url": {"url": make_image_url(encode_image_base64(element.pop("image")))},
}
)
else:
element["image"] = encode_image_base64(element["image"])
if len(output_message_list) > 0 and message.role == output_message_list[-1]["role"]:
assert isinstance(message.content, list), "Error: wrong content:" + str(message.content)
if flatten_messages_as_text:
output_message_list[-1]["content"] += "\n" + message.content[0]["text"]
else:
for el in message.content:
if el["type"] == "text" and output_message_list[-1]["content"][-1]["type"] == "text":
# Merge consecutive text messages rather than creating new ones
output_message_list[-1]["content"][-1]["text"] += "\n" + el["text"]
else:
output_message_list[-1]["content"].append(el)
else:
if flatten_messages_as_text:
content = message.content[0]["text"]
else:
content = message.content
output_message_list.append(
{
"role": message.role,
"content": content,
}
)
return output_message_list
def get_tool_call_from_text(text: str, tool_name_key: str, tool_arguments_key: str) -> ChatMessageToolCall:
tool_call_dictionary, _ = parse_json_blob(text)
try:
tool_name = tool_call_dictionary[tool_name_key]
except Exception as e:
raise ValueError(
f"Key {tool_name_key=} not found in the generated tool call. Got keys: {list(tool_call_dictionary.keys())} instead"
) from e
tool_arguments = tool_call_dictionary.get(tool_arguments_key, None)
if isinstance(tool_arguments, str):
tool_arguments = parse_json_if_needed(tool_arguments)
return ChatMessageToolCall(
id=str(uuid.uuid4()),
type="function",
function=ChatMessageToolCallFunction(name=tool_name, arguments=tool_arguments),
)
def supports_stop_parameter(model_id: str) -> bool:
"""
Check if the model supports the `stop` parameter.
Not supported with reasoning models openai/o3 and openai/o4-mini (and their versioned variants).
Args:
model_id (`str`): Model identifier (e.g. "openai/o3", "o4-mini-2025-04-16")
Returns:
bool: True if the model supports the stop parameter, False otherwise
"""
model_name = model_id.split("/")[-1]
# o3 and o4-mini (including versioned variants, o3-2025-04-16) don't support stop parameter
pattern = r"^(o3[-\d]*|o4-mini[-\d]*)$"
return not re.match(pattern, model_name)
class Model:
def __init__(
self,
flatten_messages_as_text: bool = False,
tool_name_key: str = "name",
tool_arguments_key: str = "arguments",
model_id: str | None = None,
**kwargs,
):
self.flatten_messages_as_text = flatten_messages_as_text
self.tool_name_key = tool_name_key
self.tool_arguments_key = tool_arguments_key
self.kwargs = kwargs
self._last_input_token_count: int | None = None
self._last_output_token_count: int | None = None
self.model_id: str | None = model_id
@property
def last_input_token_count(self) -> int | None:
warnings.warn(
"Attribute last_input_token_count is deprecated and will be removed in version 1.20. "
"Please use TokenUsage.input_tokens instead.",
FutureWarning,
)
return self._last_input_token_count
@property
def last_output_token_count(self) -> int | None:
warnings.warn(
"Attribute last_output_token_count is deprecated and will be removed in version 1.20. "
"Please use TokenUsage.output_tokens instead.",
FutureWarning,
)
return self._last_output_token_count
def _prepare_completion_kwargs(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
custom_role_conversions: dict[str, str] | None = None,
convert_images_to_image_urls: bool = False,
tool_choice: str | dict | None = "required", # Configurable tool_choice parameter
**kwargs,
) -> dict[str, Any]:
"""
Prepare parameters required for model invocation, handling parameter priorities.
Parameter priority from high to low:
1. Explicitly passed kwargs
2. Specific parameters (stop_sequences, response_format, etc.)
3. Default values in self.kwargs
"""
# Clean and standardize the message list
flatten_messages_as_text = kwargs.pop("flatten_messages_as_text", self.flatten_messages_as_text)
messages_as_dicts = get_clean_message_list(
messages,
role_conversions=custom_role_conversions or tool_role_conversions,
convert_images_to_image_urls=convert_images_to_image_urls,
flatten_messages_as_text=flatten_messages_as_text,
)
# Use self.kwargs as the base configuration
completion_kwargs = {
**self.kwargs,
"messages": messages_as_dicts,
}
# Handle specific parameters
if stop_sequences is not None:
# Some models do not support stop parameter
if supports_stop_parameter(self.model_id or ""):
completion_kwargs["stop"] = stop_sequences
if response_format is not None:
completion_kwargs["response_format"] = response_format
# Handle tools parameter
if tools_to_call_from:
tools_config = {
"tools": [get_tool_json_schema(tool) for tool in tools_to_call_from],
}
if tool_choice is not None:
tools_config["tool_choice"] = tool_choice
completion_kwargs.update(tools_config)
# Finally, use the passed-in kwargs to override all settings
completion_kwargs.update(kwargs)
return completion_kwargs
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
"""Process the input messages and return the model's response.
Parameters:
messages (`list[dict[str, str | list[dict]]] | list[ChatMessage]`):
A list of message dictionaries to be processed. Each dictionary should have the structure `{"role": "user/system", "content": "message content"}`.
stop_sequences (`List[str]`, *optional*):
A list of strings that will stop the generation if encountered in the model's output.
response_format (`dict[str, str]`, *optional*):
The response format to use in the model's response.
tools_to_call_from (`List[Tool]`, *optional*):
A list of tools that the model can use to generate responses.
**kwargs:
Additional keyword arguments to be passed to the underlying model.
Returns:
`ChatMessage`: A chat message object containing the model's response.
"""
raise NotImplementedError("This method must be implemented in child classes")
def __call__(self, *args, **kwargs):
return self.generate(*args, **kwargs)
def parse_tool_calls(self, message: ChatMessage) -> ChatMessage:
"""Sometimes APIs do not return the tool call as a specific object, so we need to parse it."""
message.role = MessageRole.ASSISTANT # Overwrite role if needed
if not message.tool_calls:
assert message.content is not None, "Message contains no content and no tool calls"
message.tool_calls = [
get_tool_call_from_text(message.content, self.tool_name_key, self.tool_arguments_key)
]
assert len(message.tool_calls) > 0, "No tool call was found in the model output"
for tool_call in message.tool_calls:
tool_call.function.arguments = parse_json_if_needed(tool_call.function.arguments)
return message
def to_dict(self) -> dict:
"""
Converts the model into a JSON-compatible dictionary.
"""
model_dictionary = {
**self.kwargs,
"model_id": self.model_id,
}
for attribute in [
"custom_role_conversion",
"temperature",
"max_tokens",
"provider",
"timeout",
"api_base",
"torch_dtype",
"device_map",
"organization",
"project",
"azure_endpoint",
]:
if hasattr(self, attribute):
model_dictionary[attribute] = getattr(self, attribute)
dangerous_attributes = ["token", "api_key"]
for attribute_name in dangerous_attributes:
if hasattr(self, attribute_name):
print(
f"For security reasons, we do not export the `{attribute_name}` attribute of your model. Please export it manually."
)
return model_dictionary
@classmethod
def from_dict(cls, model_dictionary: dict[str, Any]) -> "Model":
return cls(**{k: v for k, v in model_dictionary.items()})
class VLLMModel(Model):
"""Model to use [vLLM](https://docs.vllm.ai/) for fast LLM inference and serving.
Parameters:
model_id (`str`):
The Hugging Face model ID to be used for inference.
This can be a path or model identifier from the Hugging Face model hub.
model_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the vLLM model (like revision, max_model_len, etc.).
"""
def __init__(
self,
model_id,
model_kwargs: dict[str, Any] | None = None,
**kwargs,
):
if not _is_package_available("vllm"):
raise ModuleNotFoundError("Please install 'vllm' extra to use VLLMModel: `pip install 'smolagents[vllm]'`")
from vllm import LLM # type: ignore
from vllm.transformers_utils.tokenizer import get_tokenizer # type: ignore
self.model_kwargs = model_kwargs or {}
super().__init__(**kwargs)
self.model_id = model_id
self.model = LLM(model=model_id, **self.model_kwargs)
assert self.model is not None
self.tokenizer = get_tokenizer(model_id)
self._is_vlm = False # VLLMModel does not support vision models yet.
def cleanup(self):
import gc
import torch
from vllm.distributed.parallel_state import ( # type: ignore
destroy_distributed_environment,
destroy_model_parallel,
)
destroy_model_parallel()
if self.model is not None:
# taken from https://github.com/vllm-project/vllm/issues/1908#issuecomment-2076870351
del self.model.llm_engine.model_executor.driver_worker
gc.collect()
destroy_distributed_environment()
torch.cuda.empty_cache()
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
from vllm import SamplingParams # type: ignore
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
flatten_messages_as_text=(not self._is_vlm),
stop_sequences=stop_sequences,
tools_to_call_from=tools_to_call_from,
**kwargs,
)
# Override the OpenAI schema for VLLM compatibility
guided_options_request = {"guided_json": response_format["json_schema"]["schema"]} if response_format else None
messages = completion_kwargs.pop("messages")
prepared_stop_sequences = completion_kwargs.pop("stop", [])
tools = completion_kwargs.pop("tools", None)
completion_kwargs.pop("tool_choice", None)
prompt = self.tokenizer.apply_chat_template(
messages,
tools=tools,
add_generation_prompt=True,
tokenize=False,
)
sampling_params = SamplingParams(
n=kwargs.get("n", 1),
temperature=kwargs.get("temperature", 0.0),
max_tokens=kwargs.get("max_tokens", 2048),
stop=prepared_stop_sequences,
)
out = self.model.generate(
prompt,
sampling_params=sampling_params,
guided_options_request=guided_options_request,
)
output_text = out[0].outputs[0].text
self._last_input_token_count = len(out[0].prompt_token_ids)
self._last_output_token_count = len(out[0].outputs[0].token_ids)
return ChatMessage(
role=MessageRole.ASSISTANT,
content=output_text,
raw={"out": output_text, "completion_kwargs": completion_kwargs},
token_usage=TokenUsage(
input_tokens=len(out[0].prompt_token_ids),
output_tokens=len(out[0].outputs[0].token_ids),
),
)
class MLXModel(Model):
"""A class to interact with models loaded using MLX on Apple silicon.
> [!TIP]
> You must have `mlx-lm` installed on your machine. Please run `pip install smolagents[mlx-lm]` if it's not the case.
Parameters:
model_id (str):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
tool_name_key (str):
The key, which can usually be found in the model's chat template, for retrieving a tool name.
tool_arguments_key (str):
The key, which can usually be found in the model's chat template, for retrieving tool arguments.
trust_remote_code (bool, default `False`):
Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
load_kwargs (dict[str, Any], *optional*):
Additional keyword arguments to pass to the `mlx.lm.load` method when loading the model and tokenizer.
apply_chat_template_kwargs (dict, *optional*):
Additional keyword arguments to pass to the `apply_chat_template` method of the tokenizer.
kwargs (dict, *optional*):
Any additional keyword arguments that you want to use in model.generate(), for instance `max_tokens`.
Example:
```python
>>> engine = MLXModel(
... model_id="mlx-community/Qwen2.5-Coder-32B-Instruct-4bit",
... max_tokens=10000,
... )
>>> messages = [
... {
... "role": "user",
... "content": "Explain quantum mechanics in simple terms."
... }
... ]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: str,
trust_remote_code: bool = False,
load_kwargs: dict[str, Any] | None = None,
apply_chat_template_kwargs: dict[str, Any] | None = None,
**kwargs,
):
if not _is_package_available("mlx_lm"):
raise ModuleNotFoundError(
"Please install 'mlx-lm' extra to use 'MLXModel': `pip install 'smolagents[mlx-lm]'`"
)
import mlx_lm
self.load_kwargs = load_kwargs or {}
self.load_kwargs.setdefault("tokenizer_config", {}).setdefault("trust_remote_code", trust_remote_code)
self.apply_chat_template_kwargs = apply_chat_template_kwargs or {}
self.apply_chat_template_kwargs.setdefault("add_generation_prompt", True)
# mlx-lm doesn't support vision models: flatten_messages_as_text=True
super().__init__(model_id=model_id, flatten_messages_as_text=True, **kwargs)
self.model, self.tokenizer = mlx_lm.load(self.model_id, **self.load_kwargs)
self.stream_generate = mlx_lm.stream_generate
self.is_vlm = False # mlx-lm doesn't support vision models
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
if response_format is not None:
raise ValueError("MLX does not support structured outputs.")
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
tools_to_call_from=tools_to_call_from,
**kwargs,
)
messages = completion_kwargs.pop("messages")
stops = completion_kwargs.pop("stop", [])
tools = completion_kwargs.pop("tools", None)
completion_kwargs.pop("tool_choice", None)
prompt_ids = self.tokenizer.apply_chat_template(messages, tools=tools, **self.apply_chat_template_kwargs)
output_tokens = 0
text = ""
for response in self.stream_generate(self.model, self.tokenizer, prompt=prompt_ids, **completion_kwargs):
output_tokens += 1
text += response.text
if any((stop_index := text.rfind(stop)) != -1 for stop in stops):
text = text[:stop_index]
break
self._last_input_token_count = len(prompt_ids)
self._last_output_token_count = output_tokens
return ChatMessage(
role=MessageRole.ASSISTANT,
content=text,
raw={"out": text, "completion_kwargs": completion_kwargs},
token_usage=TokenUsage(
input_tokens=len(prompt_ids),
output_tokens=output_tokens,
),
)
class TransformersModel(Model):
"""A class that uses Hugging Face's Transformers library for language model interaction.
This model allows you to load and use Hugging Face's models locally using the Transformers library. It supports features like stop sequences and grammar customization.
> [!TIP]
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
Parameters:
model_id (`str`):
The Hugging Face model ID to be used for inference. This can be a path or model identifier from the Hugging Face model hub.
For example, `"Qwen/Qwen2.5-Coder-32B-Instruct"`.
device_map (`str`, *optional*):
The device_map to initialize your model with.
torch_dtype (`str`, *optional*):
The torch_dtype to initialize your model with.
trust_remote_code (bool, default `False`):
Some models on the Hub require running remote code: for this model, you would have to set this flag to True.
kwargs (dict, *optional*):
Any additional keyword arguments that you want to use in model.generate(), for instance `max_new_tokens` or `device`.
**kwargs:
Additional keyword arguments to pass to `model.generate()`, for instance `max_new_tokens` or `device`.
Raises:
ValueError:
If the model name is not provided.
Example:
```python
>>> engine = TransformersModel(
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
... device="cuda",
... max_new_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: str | None = None,
device_map: str | None = None,
torch_dtype: str | None = None,
trust_remote_code: bool = False,
**kwargs,
):
try:
import torch
from transformers import (
AutoModelForCausalLM,
AutoModelForImageTextToText,
AutoProcessor,
AutoTokenizer,
TextIteratorStreamer,
)
except ModuleNotFoundError:
raise ModuleNotFoundError(
"Please install 'transformers' extra to use 'TransformersModel': `pip install 'smolagents[transformers]'`"
)
if not model_id:
warnings.warn(
"The 'model_id' parameter will be required in version 2.0.0. "
"Please update your code to pass this parameter to avoid future errors. "
"For now, it defaults to 'HuggingFaceTB/SmolLM2-1.7B-Instruct'.",
FutureWarning,
)
model_id = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
default_max_tokens = 4096
max_new_tokens = kwargs.get("max_new_tokens") or kwargs.get("max_tokens")
if not max_new_tokens:
kwargs["max_new_tokens"] = default_max_tokens
logger.warning(
f"`max_new_tokens` not provided, using this default value for `max_new_tokens`: {default_max_tokens}"
)
if device_map is None:
device_map = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device_map}")
self._is_vlm = False
try:
self.model = AutoModelForImageTextToText.from_pretrained(
model_id,
device_map=device_map,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
)
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=trust_remote_code)
self._is_vlm = True
self.streamer = TextIteratorStreamer(self.processor.tokenizer, skip_prompt=True, skip_special_tokens=True) # type: ignore
except ValueError as e:
if "Unrecognized configuration class" in str(e):
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
torch_dtype=torch_dtype,
trust_remote_code=trust_remote_code,
)
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=trust_remote_code)
self.streamer = TextIteratorStreamer(self.tokenizer, skip_prompt=True, skip_special_tokens=True) # type: ignore
else:
raise e
except Exception as e:
raise ValueError(f"Failed to load tokenizer and model for {model_id=}: {e}") from e
super().__init__(flatten_messages_as_text=not self._is_vlm, model_id=model_id, **kwargs)
def make_stopping_criteria(self, stop_sequences: list[str], tokenizer) -> "StoppingCriteriaList":
from transformers import StoppingCriteria, StoppingCriteriaList
class StopOnStrings(StoppingCriteria):
def __init__(self, stop_strings: list[str], tokenizer):
self.stop_strings = stop_strings
self.tokenizer = tokenizer
self.stream = ""
def reset(self):
self.stream = ""
def __call__(self, input_ids, scores, **kwargs):
generated = self.tokenizer.decode(input_ids[0][-1], skip_special_tokens=True)
self.stream += generated
if any([self.stream.endswith(stop_string) for stop_string in self.stop_strings]):
return True
return False
return StoppingCriteriaList([StopOnStrings(stop_sequences, tokenizer)])
def _prepare_completion_args(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> dict[str, Any]:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
**kwargs,
)
messages = completion_kwargs.pop("messages")
stop_sequences = completion_kwargs.pop("stop", None)
tools = completion_kwargs.pop("tools", None)
max_new_tokens = (
kwargs.get("max_new_tokens")
or kwargs.get("max_tokens")
or self.kwargs.get("max_new_tokens")
or self.kwargs.get("max_tokens")
or 1024
)
prompt_tensor = (self.processor if hasattr(self, "processor") else self.tokenizer).apply_chat_template(
messages,
tools=tools,
return_tensors="pt",
add_generation_prompt=True,
tokenize=True,
return_dict=True,
)
prompt_tensor = prompt_tensor.to(self.model.device) # type: ignore
if hasattr(prompt_tensor, "input_ids"):
prompt_tensor = prompt_tensor["input_ids"]
model_tokenizer = self.processor.tokenizer if hasattr(self, "processor") else self.tokenizer
stopping_criteria = (
self.make_stopping_criteria(stop_sequences, tokenizer=model_tokenizer) if stop_sequences else None
)
completion_kwargs["max_new_tokens"] = max_new_tokens
return dict(
inputs=prompt_tensor,
use_cache=True,
stopping_criteria=stopping_criteria,
**completion_kwargs,
)
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
if response_format is not None:
raise ValueError("Transformers does not support structured outputs, use VLLMModel for this.")
generation_kwargs = self._prepare_completion_args(
messages=messages,
stop_sequences=stop_sequences,
tools_to_call_from=tools_to_call_from,
**kwargs,
)
count_prompt_tokens = generation_kwargs["inputs"].shape[1] # type: ignore
out = self.model.generate(
**generation_kwargs,
)
generated_tokens = out[0, count_prompt_tokens:]
if hasattr(self, "processor"):
output_text = self.processor.decode(generated_tokens, skip_special_tokens=True)
else:
output_text = self.tokenizer.decode(generated_tokens, skip_special_tokens=True)
if stop_sequences is not None:
output_text = remove_stop_sequences(output_text, stop_sequences)
self._last_input_token_count = count_prompt_tokens
self._last_output_token_count = len(generated_tokens)
return ChatMessage(
role=MessageRole.ASSISTANT,
content=output_text,
raw={
"out": output_text,
"completion_kwargs": {key: value for key, value in generation_kwargs.items() if key != "inputs"},
},
token_usage=TokenUsage(
input_tokens=count_prompt_tokens,
output_tokens=len(generated_tokens),
),
)
def generate_stream(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> Generator[ChatMessageStreamDelta]:
if response_format is not None:
raise ValueError("Transformers does not support structured outputs, use VLLMModel for this.")
generation_kwargs = self._prepare_completion_args(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
**kwargs,
)
count_prompt_tokens = generation_kwargs["inputs"].shape[1] # type: ignore
thread = Thread(target=self.model.generate, kwargs={"streamer": self.streamer, **generation_kwargs})
thread.start()
# Generate with streaming
for new_text in self.streamer:
self._last_input_token_count = count_prompt_tokens
self._last_output_token_count = 1
yield ChatMessageStreamDelta(
content=new_text,
tool_calls=None,
token_usage=TokenUsage(input_tokens=count_prompt_tokens, output_tokens=1),
)
thread.join()
class ApiModel(Model):
"""
Base class for API-based language models.
This class serves as a foundation for implementing models that interact with
external APIs. It handles the common functionality for managing model IDs,
custom role mappings, and API client connections.
Parameters:
model_id (`str`):
The identifier for the model to be used with the API.
custom_role_conversions (`dict[str, str`], **optional**):
Mapping to convert between internal role names and API-specific role names. Defaults to None.
client (`Any`, **optional**):
Pre-configured API client instance. If not provided, a default client will be created. Defaults to None.
**kwargs: Additional keyword arguments to pass to the parent class.
"""
def __init__(
self, model_id: str, custom_role_conversions: dict[str, str] | None = None, client: Any | None = None, **kwargs
):
super().__init__(model_id=model_id, **kwargs)
self.custom_role_conversions = custom_role_conversions or {}
self.client = client or self.create_client()
def create_client(self):
"""Create the API client for the specific service."""
raise NotImplementedError("Subclasses must implement this method to create a client")
class LiteLLMModel(ApiModel):
"""Model to use [LiteLLM Python SDK](https://docs.litellm.ai/docs/#litellm-python-sdk) to access hundreds of LLMs.
Parameters:
model_id (`str`):
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
api_base (`str`, *optional*):
The base URL of the provider API to call the model.
api_key (`str`, *optional*):
The API key to use for authentication.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
flatten_messages_as_text (`bool`, *optional*): Whether to flatten messages as text.
Defaults to `True` for models that start with "ollama", "groq", "cerebras".
**kwargs:
Additional keyword arguments to pass to the OpenAI API.
"""
def __init__(
self,
model_id: str | None = None,
api_base: str | None = None,
api_key: str | None = None,
custom_role_conversions: dict[str, str] | None = None,
flatten_messages_as_text: bool | None = None,
**kwargs,
):
if not model_id:
warnings.warn(
"The 'model_id' parameter will be required in version 2.0.0. "
"Please update your code to pass this parameter to avoid future errors. "
"For now, it defaults to 'anthropic/claude-3-5-sonnet-20240620'.",
FutureWarning,
)
model_id = "anthropic/claude-3-5-sonnet-20240620"
self.api_base = api_base
self.api_key = api_key
flatten_messages_as_text = (
flatten_messages_as_text
if flatten_messages_as_text is not None
else model_id.startswith(("ollama", "groq", "cerebras"))
)
super().__init__(
model_id=model_id,
custom_role_conversions=custom_role_conversions,
flatten_messages_as_text=flatten_messages_as_text,
**kwargs,
)
def create_client(self):
"""Create the LiteLLM client."""
try:
import litellm
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Please install 'litellm' extra to use LiteLLMModel: `pip install 'smolagents[litellm]'`"
) from e
return litellm
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
api_base=self.api_base,
api_key=self.api_key,
convert_images_to_image_urls=True,
custom_role_conversions=self.custom_role_conversions,
**kwargs,
)
response = self.client.completion(**completion_kwargs)
self._last_input_token_count = response.usage.prompt_tokens
self._last_output_token_count = response.usage.completion_tokens
return ChatMessage.from_dict(
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"}),
raw=response,
token_usage=TokenUsage(
input_tokens=response.usage.prompt_tokens,
output_tokens=response.usage.completion_tokens,
),
)
def generate_stream(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> Generator[ChatMessageStreamDelta]:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
api_base=self.api_base,
api_key=self.api_key,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
**kwargs,
)
for event in self.client.completion(**completion_kwargs, stream=True, stream_options={"include_usage": True}):
if getattr(event, "usage", None):
self._last_input_token_count = event.usage.prompt_tokens
self._last_output_token_count = event.usage.completion_tokens
yield ChatMessageStreamDelta(
content="",
token_usage=TokenUsage(
input_tokens=event.usage.prompt_tokens,
output_tokens=event.usage.completion_tokens,
),
)
if event.choices:
choice = event.choices[0]
if choice.delta:
yield ChatMessageStreamDelta(
content=choice.delta.content,
tool_calls=[
ChatMessageToolCallStreamDelta(
index=delta.index,
id=delta.id,
type=delta.type,
function=delta.function,
)
for delta in choice.delta.tool_calls
]
if choice.delta.tool_calls
else None,
)
else:
if not getattr(choice, "finish_reason", None):
raise ValueError(f"No content or tool calls in event: {event}")
class LiteLLMRouterModel(LiteLLMModel):
"""Router‑based client for interacting with the [LiteLLM Python SDK Router](https://docs.litellm.ai/docs/routing).
This class provides a high-level interface for distributing requests among multiple language models using
the LiteLLM SDK's routing capabilities. It is responsible for initializing and configuring the router client,
applying custom role conversions, and managing message formatting to ensure seamless integration with various LLMs.
Parameters:
model_id (`str`):
Identifier for the model group to use from the model list (e.g., "model-group-1").
model_list (`list[dict[str, Any]]`):
Model configurations to be used for routing.
Each configuration should include the model group name and any necessary parameters.
For more details, refer to the [LiteLLM Routing](https://docs.litellm.ai/docs/routing#quick-start) documentation.
client_kwargs (`dict[str, Any]`, *optional*):
Additional configuration parameters for the Router client. For more details, see the
[LiteLLM Routing Configurations](https://docs.litellm.ai/docs/routing).
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
flatten_messages_as_text (`bool`, *optional*): Whether to flatten messages as text.
Defaults to `True` for models that start with "ollama", "groq", "cerebras".
**kwargs:
Additional keyword arguments to pass to the LiteLLM Router completion method.
Example:
```python
>>> import os
>>> from smolagents import CodeAgent, WebSearchTool, LiteLLMRouterModel
>>> os.environ["OPENAI_API_KEY"] = ""
>>> os.environ["AWS_ACCESS_KEY_ID"] = ""
>>> os.environ["AWS_SECRET_ACCESS_KEY"] = ""
>>> os.environ["AWS_REGION"] = ""
>>> llm_loadbalancer_model_list = [
... {
... "model_name": "model-group-1",
... "litellm_params": {
... "model": "gpt-4o-mini",
... "api_key": os.getenv("OPENAI_API_KEY"),
... },
... },
... {
... "model_name": "model-group-1",
... "litellm_params": {
... "model": "bedrock/anthropic.claude-3-sonnet-20240229-v1:0",
... "aws_access_key_id": os.getenv("AWS_ACCESS_KEY_ID"),
... "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY"),
... "aws_region_name": os.getenv("AWS_REGION"),
... },
... },
>>> ]
>>> model = LiteLLMRouterModel(
... model_id="model-group-1",
... model_list=llm_loadbalancer_model_list,
... client_kwargs={
... "routing_strategy":"simple-shuffle"
... }
>>> )
>>> agent = CodeAgent(tools=[WebSearchTool()], model=model)
>>> agent.run("How many seconds would it take for a leopard at full speed to run through Pont des Arts?")
```
"""
def __init__(
self,
model_id: str,
model_list: list[dict[str, Any]],
client_kwargs: dict[str, Any] | None = None,
custom_role_conversions: dict[str, str] | None = None,
flatten_messages_as_text: bool | None = None,
**kwargs,
):
self.client_kwargs = {
"model_list": model_list,
**(client_kwargs or {}),
}
super().__init__(
model_id=model_id,
custom_role_conversions=custom_role_conversions,
flatten_messages_as_text=flatten_messages_as_text,
**kwargs,
)
def create_client(self):
try:
from litellm.router import Router
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Please install 'litellm' extra to use LiteLLMRouterModel: `pip install 'smolagents[litellm]'`"
) from e
return Router(**self.client_kwargs)
class InferenceClientModel(ApiModel):
"""A class to interact with Hugging Face's Inference Providers for language model interaction.
This model allows you to communicate with Hugging Face's models using Inference Providers. It can be used in both serverless mode, with a dedicated endpoint, or even with a local URL, supporting features like stop sequences and grammar customization.
Providers include Cerebras, Cohere, Fal, Fireworks, HF-Inference, Hyperbolic, Nebius, Novita, Replicate, SambaNova, Together, and more.
Parameters:
model_id (`str`, *optional*, default `"Qwen/Qwen2.5-Coder-32B-Instruct"`):
The Hugging Face model ID to be used for inference.
This can be a model identifier from the Hugging Face model hub or a URL to a deployed Inference Endpoint.
Currently, it defaults to `"Qwen/Qwen2.5-Coder-32B-Instruct"`, but this may change in the future.
provider (`str`, *optional*):
Name of the provider to use for inference. A list of supported providers can be found in the [Inference Providers documentation](https://huggingface.co/docs/inference-providers/index#partners).
Defaults to "auto" i.e. the first of the providers available for the model, sorted by the user's order [here](https://hf.co/settings/inference-providers).
If `base_url` is passed, then `provider` is not used.
token (`str`, *optional*):
Token used by the Hugging Face API for authentication. This token need to be authorized 'Make calls to the serverless Inference Providers'.
If the model is gated (like Llama-3 models), the token also needs 'Read access to contents of all public gated repos you can access'.
If not provided, the class will try to use environment variable 'HF_TOKEN', else use the token stored in the Hugging Face CLI configuration.
timeout (`int`, *optional*, defaults to 120):
Timeout for the API request, in seconds.
client_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the Hugging Face InferenceClient.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
api_key (`str`, *optional*):
Token to use for authentication. This is a duplicated argument from `token` to make [`InferenceClientModel`]
follow the same pattern as `openai.OpenAI` client. Cannot be used if `token` is set. Defaults to None.
bill_to (`str`, *optional*):
The billing account to use for the requests. By default the requests are billed on the user's account. Requests can only be billed to
an organization the user is a member of, and which has subscribed to Enterprise Hub.
base_url (`str`, `optional`):
Base URL to run inference. This is a duplicated argument from `model` to make [`InferenceClientModel`]
follow the same pattern as `openai.OpenAI` client. Cannot be used if `model` is set. Defaults to None.
**kwargs:
Additional keyword arguments to pass to the Hugging Face InferenceClient.
Raises:
ValueError:
If the model name is not provided.
Example:
```python
>>> engine = InferenceClientModel(
... model_id="Qwen/Qwen2.5-Coder-32B-Instruct",
... provider="nebius",
... token="your_hf_token_here",
... max_tokens=5000,
... )
>>> messages = [{"role": "user", "content": "Explain quantum mechanics in simple terms."}]
>>> response = engine(messages, stop_sequences=["END"])
>>> print(response)
"Quantum mechanics is the branch of physics that studies..."
```
"""
def __init__(
self,
model_id: str = "Qwen/Qwen2.5-Coder-32B-Instruct",
provider: str | None = None,
token: str | None = None,
timeout: int = 120,
client_kwargs: dict[str, Any] | None = None,
custom_role_conversions: dict[str, str] | None = None,
api_key: str | None = None,
bill_to: str | None = None,
base_url: str | None = None,
**kwargs,
):
if token is not None and api_key is not None:
raise ValueError(
"Received both `token` and `api_key` arguments. Please provide only one of them."
" `api_key` is an alias for `token` to make the API compatible with OpenAI's client."
" It has the exact same behavior as `token`."
)
token = token if token is not None else api_key
if token is None:
token = os.getenv("HF_TOKEN")
self.client_kwargs = {
**(client_kwargs or {}),
"model": model_id,
"provider": provider,
"token": token,
"timeout": timeout,
"bill_to": bill_to,
"base_url": base_url,
}
super().__init__(model_id=model_id, custom_role_conversions=custom_role_conversions, **kwargs)
def create_client(self):
"""Create the Hugging Face client."""
from huggingface_hub import InferenceClient
return InferenceClient(**self.client_kwargs)
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
if response_format is not None and self.client_kwargs["provider"] not in STRUCTURED_GENERATION_PROVIDERS:
raise ValueError(
"InferenceClientModel only supports structured outputs with these providers:"
+ ", ".join(STRUCTURED_GENERATION_PROVIDERS)
)
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
tools_to_call_from=tools_to_call_from,
# response_format=response_format,
convert_images_to_image_urls=True,
custom_role_conversions=self.custom_role_conversions,
**kwargs,
)
response = self.client.chat_completion(**completion_kwargs)
self._last_input_token_count = response.usage.prompt_tokens
self._last_output_token_count = response.usage.completion_tokens
return ChatMessage.from_dict(
asdict(response.choices[0].message),
raw=response,
token_usage=TokenUsage(
input_tokens=response.usage.prompt_tokens,
output_tokens=response.usage.completion_tokens,
),
)
def generate_stream(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> Generator[ChatMessageStreamDelta]:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
**kwargs,
)
for event in self.client.chat.completions.create(
**completion_kwargs, stream=True, stream_options={"include_usage": True}
):
if getattr(event, "usage", None):
self._last_input_token_count = event.usage.prompt_tokens
self._last_output_token_count = event.usage.completion_tokens
yield ChatMessageStreamDelta(
content="",
token_usage=TokenUsage(
input_tokens=event.usage.prompt_tokens,
output_tokens=event.usage.completion_tokens,
),
)
if event.choices:
choice = event.choices[0]
if choice.delta:
yield ChatMessageStreamDelta(
content=choice.delta.content,
tool_calls=[
ChatMessageToolCallStreamDelta(
index=delta.index,
id=delta.id,
type=delta.type,
function=delta.function,
)
for delta in choice.delta.tool_calls
]
if choice.delta.tool_calls
else None,
)
else:
if not getattr(choice, "finish_reason", None):
raise ValueError(f"No content or tool calls in event: {event}")
class OpenAIServerModel(ApiModel):
"""This model connects to an OpenAI-compatible API server.
Parameters:
model_id (`str`):
The model identifier to use on the server (e.g. "gpt-3.5-turbo").
api_base (`str`, *optional*):
The base URL of the OpenAI-compatible API server.
api_key (`str`, *optional*):
The API key to use for authentication.
organization (`str`, *optional*):
The organization to use for the API request.
project (`str`, *optional*):
The project to use for the API request.
client_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the OpenAI client (like organization, project, max_retries etc.).
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
flatten_messages_as_text (`bool`, default `False`):
Whether to flatten messages as text.
**kwargs:
Additional keyword arguments to pass to the OpenAI API.
"""
def __init__(
self,
model_id: str,
api_base: str | None = None,
api_key: str | None = None,
organization: str | None = None,
project: str | None = None,
client_kwargs: dict[str, Any] | None = None,
custom_role_conversions: dict[str, str] | None = None,
flatten_messages_as_text: bool = False,
**kwargs,
):
self.client_kwargs = {
**(client_kwargs or {}),
"api_key": api_key,
"base_url": api_base,
"organization": organization,
"project": project,
}
super().__init__(
model_id=model_id,
custom_role_conversions=custom_role_conversions,
flatten_messages_as_text=flatten_messages_as_text,
**kwargs,
)
def create_client(self):
try:
import openai
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Please install 'openai' extra to use OpenAIServerModel: `pip install 'smolagents[openai]'`"
) from e
return openai.OpenAI(**self.client_kwargs)
def generate_stream(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> Generator[ChatMessageStreamDelta]:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
**kwargs,
)
for event in self.client.chat.completions.create(
**completion_kwargs, stream=True, stream_options={"include_usage": True}
):
if event.usage:
self._last_input_token_count = event.usage.prompt_tokens
self._last_output_token_count = event.usage.completion_tokens
yield ChatMessageStreamDelta(
content="",
token_usage=TokenUsage(
input_tokens=event.usage.prompt_tokens,
output_tokens=event.usage.completion_tokens,
),
)
if event.choices:
choice = event.choices[0]
if choice.delta:
yield ChatMessageStreamDelta(
content=choice.delta.content,
tool_calls=[
ChatMessageToolCallStreamDelta(
index=delta.index,
id=delta.id,
type=delta.type,
function=delta.function,
)
for delta in choice.delta.tool_calls
]
if choice.delta.tool_calls
else None,
)
else:
if not getattr(choice, "finish_reason", None):
raise ValueError(f"No content or tool calls in event: {event}")
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
completion_kwargs = self._prepare_completion_kwargs(
messages=messages,
stop_sequences=stop_sequences,
response_format=response_format,
tools_to_call_from=tools_to_call_from,
model=self.model_id,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
**kwargs,
)
response = self.client.chat.completions.create(**completion_kwargs)
# Reported that `response.usage` can be None in some cases when using OpenRouter: see GH-1401
self._last_input_token_count = getattr(response.usage, "prompt_tokens", 0)
self._last_output_token_count = getattr(response.usage, "completion_tokens", 0)
return ChatMessage.from_dict(
response.choices[0].message.model_dump(include={"role", "content", "tool_calls"}),
raw=response,
token_usage=TokenUsage(
input_tokens=response.usage.prompt_tokens,
output_tokens=response.usage.completion_tokens,
),
)
OpenAIModel = OpenAIServerModel
class AzureOpenAIServerModel(OpenAIServerModel):
"""This model connects to an Azure OpenAI deployment.
Parameters:
model_id (`str`):
The model deployment name to use when connecting (e.g. "gpt-4o-mini").
azure_endpoint (`str`, *optional*):
The Azure endpoint, including the resource, e.g. `https://example-resource.azure.openai.com/`. If not provided, it will be inferred from the `AZURE_OPENAI_ENDPOINT` environment variable.
api_key (`str`, *optional*):
The API key to use for authentication. If not provided, it will be inferred from the `AZURE_OPENAI_API_KEY` environment variable.
api_version (`str`, *optional*):
The API version to use. If not provided, it will be inferred from the `OPENAI_API_VERSION` environment variable.
client_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to the AzureOpenAI client (like organization, project, max_retries etc.).
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
**kwargs:
Additional keyword arguments to pass to the Azure OpenAI API.
"""
def __init__(
self,
model_id: str,
azure_endpoint: str | None = None,
api_key: str | None = None,
api_version: str | None = None,
client_kwargs: dict[str, Any] | None = None,
custom_role_conversions: dict[str, str] | None = None,
**kwargs,
):
client_kwargs = client_kwargs or {}
client_kwargs.update(
{
"api_version": api_version,
"azure_endpoint": azure_endpoint,
}
)
super().__init__(
model_id=model_id,
api_key=api_key,
client_kwargs=client_kwargs,
custom_role_conversions=custom_role_conversions,
**kwargs,
)
def create_client(self):
try:
import openai
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Please install 'openai' extra to use AzureOpenAIServerModel: `pip install 'smolagents[openai]'`"
) from e
return openai.AzureOpenAI(**self.client_kwargs)
AzureOpenAIModel = AzureOpenAIServerModel
class AmazonBedrockServerModel(ApiModel):
"""
A model class for interacting with Amazon Bedrock Server models through the Bedrock API.
This class provides an interface to interact with various Bedrock language models,
allowing for customized model inference, guardrail configuration, message handling,
and other parameters allowed by boto3 API.
Parameters:
model_id (`str`):
The model identifier to use on Bedrock (e.g. "us.amazon.nova-pro-v1:0").
client (`boto3.client`, *optional*):
A custom boto3 client for AWS interactions. If not provided, a default client will be created.
client_kwargs (dict[str, Any], *optional*):
Keyword arguments used to configure the boto3 client if it needs to be created internally.
Examples include `region_name`, `config`, or `endpoint_url`.
custom_role_conversions (`dict[str, str]`, *optional*):
Custom role conversion mapping to convert message roles in others.
Useful for specific models that do not support specific message roles like "system".
Defaults to converting all roles to "user" role to enable using all the Bedrock models.
flatten_messages_as_text (`bool`, default `False`):
Whether to flatten messages as text.
**kwargs
Additional keyword arguments passed directly to the underlying API calls.
Example:
Creating a model instance with default settings:
>>> bedrock_model = AmazonBedrockServerModel(
... model_id='us.amazon.nova-pro-v1:0'
... )
Creating a model instance with a custom boto3 client:
>>> import boto3
>>> client = boto3.client('bedrock-runtime', region_name='us-west-2')
>>> bedrock_model = AmazonBedrockServerModel(
... model_id='us.amazon.nova-pro-v1:0',
... client=client
... )
Creating a model instance with client_kwargs for internal client creation:
>>> bedrock_model = AmazonBedrockServerModel(
... model_id='us.amazon.nova-pro-v1:0',
... client_kwargs={'region_name': 'us-west-2', 'endpoint_url': 'https://custom-endpoint.com'}
... )
Creating a model instance with inference and guardrail configurations:
>>> additional_api_config = {
... "inferenceConfig": {
... "maxTokens": 3000
... },
... "guardrailConfig": {
... "guardrailIdentifier": "identify1",
... "guardrailVersion": 'v1'
... },
... }
>>> bedrock_model = AmazonBedrockServerModel(
... model_id='anthropic.claude-3-haiku-20240307-v1:0',
... **additional_api_config
... )
"""
def __init__(
self,
model_id: str,
client=None,
client_kwargs: dict[str, Any] | None = None,
custom_role_conversions: dict[str, str] | None = None,
**kwargs,
):
self.client_kwargs = client_kwargs or {}
# Bedrock only supports `assistant` and `user` roles.
# Many Bedrock models do not allow conversations to start with the `assistant` role, so the default is set to `user/user`.
# This parameter is retained for future model implementations and extended support.
custom_role_conversions = custom_role_conversions or {
MessageRole.SYSTEM: MessageRole.USER,
MessageRole.ASSISTANT: MessageRole.USER,
MessageRole.TOOL_CALL: MessageRole.USER,
MessageRole.TOOL_RESPONSE: MessageRole.USER,
}
super().__init__(
model_id=model_id,
custom_role_conversions=custom_role_conversions,
flatten_messages_as_text=False, # Bedrock API doesn't support flatten messages, must be a list of messages
client=client,
**kwargs,
)
def _prepare_completion_kwargs(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
custom_role_conversions: dict[str, str] | None = None,
convert_images_to_image_urls: bool = False,
tool_choice: str | dict[Any, Any] | None = None,
**kwargs,
) -> dict:
"""
Overrides the base method to handle Bedrock-specific configurations.
This implementation adapts the completion keyword arguments to align with
Bedrock's requirements, ensuring compatibility with its unique setup and
constraints.
"""
completion_kwargs = super()._prepare_completion_kwargs(
messages=messages,
stop_sequences=None, # Bedrock support stop_sequence using Inference Config
tools_to_call_from=tools_to_call_from,
custom_role_conversions=custom_role_conversions,
convert_images_to_image_urls=convert_images_to_image_urls,
**kwargs,
)
# Not all models in Bedrock support `toolConfig`. Also, smolagents already include the tool call in the prompt,
# so adding `toolConfig` could cause conflicts. We remove it to avoid issues.
completion_kwargs.pop("toolConfig", None)
# The Bedrock API does not support the `type` key in requests.
# This block of code modifies the object to meet Bedrock's requirements.
for message in completion_kwargs.get("messages", []):
for content in message.get("content", []):
if "type" in content:
del content["type"]
return {
"modelId": self.model_id,
**completion_kwargs,
}
def create_client(self):
try:
import boto3 # type: ignore
except ModuleNotFoundError as e:
raise ModuleNotFoundError(
"Please install 'bedrock' extra to use AmazonBedrockServerModel: `pip install 'smolagents[bedrock]'`"
) from e
return boto3.client("bedrock-runtime", **self.client_kwargs)
def generate(
self,
messages: list[ChatMessage],
stop_sequences: list[str] | None = None,
response_format: dict[str, str] | None = None,
tools_to_call_from: list[Tool] | None = None,
**kwargs,
) -> ChatMessage:
if response_format is not None:
raise ValueError("Amazon Bedrock does not support response_format")
completion_kwargs: dict = self._prepare_completion_kwargs(
messages=messages,
tools_to_call_from=tools_to_call_from,
custom_role_conversions=self.custom_role_conversions,
convert_images_to_image_urls=True,
**kwargs,
)
# self.client is created in ApiModel class
response = self.client.converse(**completion_kwargs)
# Get first message
response["output"]["message"]["content"] = response["output"]["message"]["content"][0]["text"]
self._last_input_token_count = response["usage"]["inputTokens"]
self._last_output_token_count = response["usage"]["outputTokens"]
return ChatMessage.from_dict(
response["output"]["message"],
raw=response,
token_usage=TokenUsage(
input_tokens=response["usage"]["inputTokens"],
output_tokens=response["usage"]["outputTokens"],
),
)
AmazonBedrockModel = AmazonBedrockServerModel
__all__ = [
"MessageRole",
"tool_role_conversions",
"get_clean_message_list",
"Model",
"MLXModel",
"TransformersModel",
"ApiModel",
"InferenceClientModel",
"LiteLLMModel",
"LiteLLMRouterModel",
"OpenAIServerModel",
"OpenAIModel",
"VLLMModel",
"AzureOpenAIServerModel",
"AzureOpenAIModel",
"AmazonBedrockServerModel",
"AmazonBedrockModel",
"ChatMessage",
]
|