File size: 50,164 Bytes
d7949de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
#!/usr/bin/env python
# coding=utf-8

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import ast
import inspect
import json
import logging
import os
import sys
import tempfile
import textwrap
import types
import warnings
from collections.abc import Callable
from contextlib import contextmanager
from functools import wraps
from pathlib import Path
from typing import TYPE_CHECKING, Any

from huggingface_hub import (
    CommitOperationAdd,
    create_commit,
    create_repo,
    get_collection,
    hf_hub_download,
    metadata_update,
)

from ._function_type_hints_utils import (
    TypeHintParsingException,
    _convert_type_hints_to_json_schema,
    _get_json_schema_type,
    get_imports,
    get_json_schema,
)
from .agent_types import handle_agent_input_types, handle_agent_output_types
from .tool_validation import MethodChecker, validate_tool_attributes
from .utils import (
    BASE_BUILTIN_MODULES,
    _is_package_available,
    get_source,
    instance_to_source,
    is_valid_name,
)


if TYPE_CHECKING:
    import mcp


logger = logging.getLogger(__name__)


def validate_after_init(cls):
    original_init = cls.__init__

    @wraps(original_init)
    def new_init(self, *args, **kwargs):
        original_init(self, *args, **kwargs)
        self.validate_arguments()

    cls.__init__ = new_init
    return cls


AUTHORIZED_TYPES = [
    "string",
    "boolean",
    "integer",
    "number",
    "image",
    "audio",
    "array",
    "object",
    "any",
    "null",
]

CONVERSION_DICT = {"str": "string", "int": "integer", "float": "number"}


class Tool:
    """
    A base class for the functions used by the agent. Subclass this and implement the `forward` method as well as the
    following class attributes:

    - **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
      will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
      returns the text contained in the file'.
    - **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
      `"text-classifier"` or `"image_generator"`.
    - **inputs** (`Dict[str, Dict[str, Union[str, type, bool]]]`) -- The dict of modalities expected for the inputs.
      It has one `type`key and a `description`key.
      This is used by `launch_gradio_demo` or to make a nice space from your tool, and also can be used in the generated
      description for your tool.
    - **output_type** (`type`) -- The type of the tool output. This is used by `launch_gradio_demo`
      or to make a nice space from your tool, and also can be used in the generated description for your tool.

    You can also override the method [`~Tool.setup`] if your tool has an expensive operation to perform before being
    usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
    instantiation.
    """

    name: str
    description: str
    inputs: dict[str, dict[str, str | type | bool]]
    output_type: str

    def __init__(self, *args, **kwargs):
        self.is_initialized = False

    def __init_subclass__(cls, **kwargs):
        super().__init_subclass__(**kwargs)
        validate_after_init(cls)

    def validate_arguments(self):
        required_attributes = {
            "description": str,
            "name": str,
            "inputs": dict,
            "output_type": str,
        }
        # Validate class attributes
        for attr, expected_type in required_attributes.items():
            attr_value = getattr(self, attr, None)
            if attr_value is None:
                raise TypeError(f"You must set an attribute {attr}.")
            if not isinstance(attr_value, expected_type):
                raise TypeError(
                    f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
                )
        # - Validate name
        if not is_valid_name(self.name):
            raise Exception(
                f"Invalid Tool name '{self.name}': must be a valid Python identifier and not a reserved keyword"
            )
        # Validate inputs
        for input_name, input_content in self.inputs.items():
            assert isinstance(input_content, dict), f"Input '{input_name}' should be a dictionary."
            assert "type" in input_content and "description" in input_content, (
                f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
            )
            if input_content["type"] not in AUTHORIZED_TYPES:
                raise Exception(
                    f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {AUTHORIZED_TYPES}."
                )
        # Validate output type
        assert getattr(self, "output_type", None) in AUTHORIZED_TYPES

        # Validate forward function signature, except for Tools that use a "generic" signature (PipelineTool, SpaceToolWrapper, LangChainToolWrapper)
        if not (
            hasattr(self, "skip_forward_signature_validation")
            and getattr(self, "skip_forward_signature_validation") is True
        ):
            signature = inspect.signature(self.forward)
            actual_keys = set(key for key in signature.parameters.keys() if key != "self")
            expected_keys = set(self.inputs.keys())
            if actual_keys != expected_keys:
                raise Exception(
                    f"In tool '{self.name}', 'forward' method parameters were {actual_keys}, but expected {expected_keys}. "
                    f"It should take 'self' as its first argument, then its next arguments should match the keys of tool attribute 'inputs'."
                )

            json_schema = _convert_type_hints_to_json_schema(self.forward, error_on_missing_type_hints=False)[
                "properties"
            ]  # This function will not raise an error on missing docstrings, contrary to get_json_schema
            for key, value in self.inputs.items():
                assert key in json_schema, (
                    f"Input '{key}' should be present in function signature, found only {json_schema.keys()}"
                )
                if "nullable" in value:
                    assert "nullable" in json_schema[key], (
                        f"Nullable argument '{key}' in inputs should have key 'nullable' set to True in function signature."
                    )
                if key in json_schema and "nullable" in json_schema[key]:
                    assert "nullable" in value, (
                        f"Nullable argument '{key}' in function signature should have key 'nullable' set to True in inputs."
                    )

    def forward(self, *args, **kwargs):
        return NotImplementedError("Write this method in your subclass of `Tool`.")

    def __call__(self, *args, sanitize_inputs_outputs: bool = False, **kwargs):
        if not self.is_initialized:
            self.setup()

        # Handle the arguments might be passed as a single dictionary
        if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], dict):
            potential_kwargs = args[0]

            # If the dictionary keys match our input parameters, convert it to kwargs
            if all(key in self.inputs for key in potential_kwargs):
                args = ()
                kwargs = potential_kwargs

        if sanitize_inputs_outputs:
            args, kwargs = handle_agent_input_types(*args, **kwargs)
        outputs = self.forward(*args, **kwargs)
        if sanitize_inputs_outputs:
            outputs = handle_agent_output_types(outputs, self.output_type)
        return outputs

    def setup(self):
        """
        Overwrite this method here for any operation that is expensive and needs to be executed before you start using
        your tool. Such as loading a big model.
        """
        self.is_initialized = True

    def to_dict(self) -> dict:
        """Returns a dictionary representing the tool"""
        class_name = self.__class__.__name__
        if type(self).__name__ == "SimpleTool":
            # Check that imports are self-contained
            source_code = get_source(self.forward).replace("@tool", "")
            forward_node = ast.parse(source_code)
            # If tool was created using '@tool' decorator, it has only a forward pass, so it's simpler to just get its code
            method_checker = MethodChecker(set())
            method_checker.visit(forward_node)

            if len(method_checker.errors) > 0:
                errors = [f"- {error}" for error in method_checker.errors]
                raise (ValueError(f"SimpleTool validation failed for {self.name}:\n" + "\n".join(errors)))

            forward_source_code = get_source(self.forward)
            tool_code = textwrap.dedent(
                f"""
            from smolagents import Tool
            from typing import Any, Optional

            class {class_name}(Tool):
                name = "{self.name}"
                description = {json.dumps(textwrap.dedent(self.description).strip())}
                inputs = {repr(self.inputs)}
                output_type = "{self.output_type}"
            """
            ).strip()
            import re

            def add_self_argument(source_code: str) -> str:
                """Add 'self' as first argument to a function definition if not present."""
                pattern = r"def forward\(((?!self)[^)]*)\)"

                def replacement(match):
                    args = match.group(1).strip()
                    if args:  # If there are other arguments
                        return f"def forward(self, {args})"
                    return "def forward(self)"

                return re.sub(pattern, replacement, source_code)

            forward_source_code = forward_source_code.replace(self.name, "forward")
            forward_source_code = add_self_argument(forward_source_code)
            forward_source_code = forward_source_code.replace("@tool", "").strip()
            tool_code += "\n\n" + textwrap.indent(forward_source_code, "    ")

        else:  # If the tool was not created by the @tool decorator, it was made by subclassing Tool
            if type(self).__name__ in [
                "SpaceToolWrapper",
                "LangChainToolWrapper",
                "GradioToolWrapper",
            ]:
                raise ValueError(
                    "Cannot save objects created with from_space, from_langchain or from_gradio, as this would create errors."
                )

            validate_tool_attributes(self.__class__)

            tool_code = "from typing import Any, Optional\n" + instance_to_source(self, base_cls=Tool)

        requirements = {el for el in get_imports(tool_code) if el not in sys.stdlib_module_names} | {"smolagents"}

        return {"name": self.name, "code": tool_code, "requirements": sorted(requirements)}

    @classmethod
    def from_dict(cls, tool_dict: dict[str, Any], **kwargs) -> "Tool":
        """
        Create tool from a dictionary representation.

        Args:
            tool_dict (`dict[str, Any]`): Dictionary representation of the tool.
            **kwargs: Additional keyword arguments to pass to the tool's constructor.

        Returns:
            `Tool`: Tool object.
        """
        if "code" not in tool_dict:
            raise ValueError("Tool dictionary must contain 'code' key with the tool source code")
        return cls.from_code(tool_dict["code"], **kwargs)

    def save(self, output_dir: str | Path, tool_file_name: str = "tool", make_gradio_app: bool = True):
        """
        Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
        tool in `output_dir` as well as autogenerate:

        - a `{tool_file_name}.py` file containing the logic for your tool.
        If you pass `make_gradio_app=True`, this will also write:
        - an `app.py` file providing a UI for your tool when it is exported to a Space with `tool.push_to_hub()`
        - a `requirements.txt` containing the names of the modules used by your tool (as detected when inspecting its
          code)

        Args:
            output_dir (`str` or `Path`): The folder in which you want to save your tool.
            tool_file_name (`str`, *optional*): The file name in which you want to save your tool.
            make_gradio_app (`bool`, *optional*, defaults to True): Whether to also export a `requirements.txt` file and Gradio UI.
        """
        # Ensure output directory exists
        output_path = Path(output_dir)
        output_path.mkdir(parents=True, exist_ok=True)
        # Save tool file
        self._write_file(output_path / f"{tool_file_name}.py", self._get_tool_code())
        if make_gradio_app:
            #  Save app file
            self._write_file(output_path / "app.py", self._get_gradio_app_code(tool_module_name=tool_file_name))
            # Save requirements file
            self._write_file(output_path / "requirements.txt", self._get_requirements())

    def _write_file(self, file_path: Path, content: str) -> None:
        """Writes content to a file with UTF-8 encoding."""
        file_path.write_text(content, encoding="utf-8")

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: str = "Upload tool",
        private: bool | None = None,
        token: bool | str | None = None,
        create_pr: bool = False,
    ) -> str:
        """
        Upload the tool to the Hub.

        Parameters:
            repo_id (`str`):
                The name of the repository you want to push your tool to. It should contain your organization name when
                pushing to a given organization.
            commit_message (`str`, *optional*, defaults to `"Upload tool"`):
                Message to commit while pushing.
            private (`bool`, *optional*):
                Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
            token (`bool` or `str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
                when running `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether to create a PR with the uploaded files or directly commit.
        """
        # Initialize repository
        repo_id = self._initialize_hub_repo(repo_id, token, private)
        # Prepare files for commit
        additions = self._prepare_hub_files()
        # Create commit
        return create_commit(
            repo_id=repo_id,
            operations=additions,
            commit_message=commit_message,
            token=token,
            create_pr=create_pr,
            repo_type="space",
        )

    @staticmethod
    def _initialize_hub_repo(repo_id: str, token: bool | str | None, private: bool | None) -> str:
        """Initialize repository on Hugging Face Hub."""
        repo_url = create_repo(
            repo_id=repo_id,
            token=token,
            private=private,
            exist_ok=True,
            repo_type="space",
            space_sdk="gradio",
        )
        metadata_update(repo_url.repo_id, {"tags": ["smolagents", "tool"]}, repo_type="space", token=token)
        return repo_url.repo_id

    def _prepare_hub_files(self) -> list:
        """Prepare files for Hub commit."""
        additions = [
            # Add tool code
            CommitOperationAdd(
                path_in_repo="tool.py",
                path_or_fileobj=self._get_tool_code().encode(),
            ),
            # Add Gradio app
            CommitOperationAdd(
                path_in_repo="app.py",
                path_or_fileobj=self._get_gradio_app_code().encode(),
            ),
            # Add requirements
            CommitOperationAdd(
                path_in_repo="requirements.txt",
                path_or_fileobj=self._get_requirements().encode(),
            ),
        ]
        return additions

    def _get_tool_code(self) -> str:
        """Get the tool's code."""
        return self.to_dict()["code"]

    def _get_gradio_app_code(self, tool_module_name: str = "tool") -> str:
        """Get the Gradio app code."""
        class_name = self.__class__.__name__
        return textwrap.dedent(
            f"""\
            from smolagents import launch_gradio_demo
            from {tool_module_name} import {class_name}

            tool = {class_name}()
            launch_gradio_demo(tool)
            """
        )

    def _get_requirements(self) -> str:
        """Get the requirements."""
        return "\n".join(self.to_dict()["requirements"])

    @classmethod
    def from_hub(
        cls,
        repo_id: str,
        token: str | None = None,
        trust_remote_code: bool = False,
        **kwargs,
    ):
        """
        Loads a tool defined on the Hub.

        <Tip warning={true}>

        Loading a tool from the Hub means that you'll download the tool and execute it locally.
        ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
        installing a package using pip/npm/apt.

        </Tip>

        Args:
            repo_id (`str`):
                The name of the Space repo on the Hub where your tool is defined.
            token (`str`, *optional*):
                The token to identify you on hf.co. If unset, will use the token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            trust_remote_code(`str`, *optional*, defaults to False):
                This flags marks that you understand the risk of running remote code and that you trust this tool.
                If not setting this to True, loading the tool from Hub will fail.
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
                `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
                others will be passed along to its init.
        """
        if not trust_remote_code:
            raise ValueError(
                "Loading a tool from Hub requires to acknowledge you trust its code: to do so, pass `trust_remote_code=True`."
            )

        # Get the tool's tool.py file.
        tool_file = hf_hub_download(
            repo_id,
            "tool.py",
            token=token,
            repo_type="space",
            cache_dir=kwargs.get("cache_dir"),
            force_download=kwargs.get("force_download"),
            proxies=kwargs.get("proxies"),
            revision=kwargs.get("revision"),
            subfolder=kwargs.get("subfolder"),
            local_files_only=kwargs.get("local_files_only"),
        )

        tool_code = Path(tool_file).read_text()
        return Tool.from_code(tool_code, **kwargs)

    @classmethod
    def from_code(cls, tool_code: str, **kwargs):
        module = types.ModuleType("dynamic_tool")

        exec(tool_code, module.__dict__)

        # Find the Tool subclass
        tool_class = next(
            (
                obj
                for _, obj in inspect.getmembers(module, inspect.isclass)
                if issubclass(obj, Tool) and obj is not Tool
            ),
            None,
        )

        if tool_class is None:
            raise ValueError("No Tool subclass found in the code.")

        if not isinstance(tool_class.inputs, dict):
            tool_class.inputs = ast.literal_eval(tool_class.inputs)

        return tool_class(**kwargs)

    @staticmethod
    def from_space(
        space_id: str,
        name: str,
        description: str,
        api_name: str | None = None,
        token: str | None = None,
    ):
        """
        Creates a [`Tool`] from a Space given its id on the Hub.

        Args:
            space_id (`str`):
                The id of the Space on the Hub.
            name (`str`):
                The name of the tool.
            description (`str`):
                The description of the tool.
            api_name (`str`, *optional*):
                The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
            token (`str`, *optional*):
                Add your token to access private spaces or increase your GPU quotas.
        Returns:
            [`Tool`]:
                The Space, as a tool.

        Examples:
        ```py
        >>> image_generator = Tool.from_space(
        ...     space_id="black-forest-labs/FLUX.1-schnell",
        ...     name="image-generator",
        ...     description="Generate an image from a prompt"
        ... )
        >>> image = image_generator("Generate an image of a cool surfer in Tahiti")
        ```
        ```py
        >>> face_swapper = Tool.from_space(
        ...     "tuan2308/face-swap",
        ...     "face_swapper",
        ...     "Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
        ... )
        >>> image = face_swapper('./aymeric.jpeg', './ruth.jpg')
        ```
        """
        from gradio_client import Client, handle_file

        class SpaceToolWrapper(Tool):
            skip_forward_signature_validation = True

            def __init__(
                self,
                space_id: str,
                name: str,
                description: str,
                api_name: str | None = None,
                token: str | None = None,
            ):
                self.name = name
                self.description = description
                self.client = Client(space_id, hf_token=token)
                space_description = self.client.view_api(return_format="dict", print_info=False)["named_endpoints"]

                # If api_name is not defined, take the first of the available APIs for this space
                if api_name is None:
                    api_name = list(space_description.keys())[0]
                    logger.warning(
                        f"Since `api_name` was not defined, it was automatically set to the first available API: `{api_name}`."
                    )
                self.api_name = api_name

                try:
                    space_description_api = space_description[api_name]
                except KeyError:
                    raise KeyError(f"Could not find specified {api_name=} among available api names.")

                self.inputs = {}
                for parameter in space_description_api["parameters"]:
                    if not parameter["parameter_has_default"]:
                        parameter_type = parameter["type"]["type"]
                        if parameter_type == "object":
                            parameter_type = "any"
                        self.inputs[parameter["parameter_name"]] = {
                            "type": parameter_type,
                            "description": parameter["python_type"]["description"],
                        }
                output_component = space_description_api["returns"][0]["component"]
                if output_component == "Image":
                    self.output_type = "image"
                elif output_component == "Audio":
                    self.output_type = "audio"
                else:
                    self.output_type = "any"
                self.is_initialized = True

            def sanitize_argument_for_prediction(self, arg):
                from gradio_client.utils import is_http_url_like
                from PIL.Image import Image

                if isinstance(arg, Image):
                    temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
                    arg.save(temp_file.name)
                    arg = temp_file.name
                if (
                    (isinstance(arg, str) and os.path.isfile(arg))
                    or (isinstance(arg, Path) and arg.exists() and arg.is_file())
                    or is_http_url_like(arg)
                ):
                    arg = handle_file(arg)
                return arg

            def forward(self, *args, **kwargs):
                # Preprocess args and kwargs:
                args = list(args)
                for i, arg in enumerate(args):
                    args[i] = self.sanitize_argument_for_prediction(arg)
                for arg_name, arg in kwargs.items():
                    kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)

                output = self.client.predict(*args, api_name=self.api_name, **kwargs)
                if isinstance(output, tuple) or isinstance(output, list):
                    return output[
                        0
                    ]  # Sometime the space also returns the generation seed, in which case the result is at index 0
                return output

        return SpaceToolWrapper(
            space_id=space_id,
            name=name,
            description=description,
            api_name=api_name,
            token=token,
        )

    @staticmethod
    def from_gradio(gradio_tool):
        """
        Creates a [`Tool`] from a gradio tool.
        """
        import inspect

        class GradioToolWrapper(Tool):
            def __init__(self, _gradio_tool):
                self.name = _gradio_tool.name
                self.description = _gradio_tool.description
                self.output_type = "string"
                self._gradio_tool = _gradio_tool
                func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
                self.inputs = {
                    key: {"type": CONVERSION_DICT[value.annotation], "description": ""} for key, value in func_args
                }
                self.forward = self._gradio_tool.run

        return GradioToolWrapper(gradio_tool)

    @staticmethod
    def from_langchain(langchain_tool):
        """
        Creates a [`Tool`] from a langchain tool.
        """

        class LangChainToolWrapper(Tool):
            skip_forward_signature_validation = True

            def __init__(self, _langchain_tool):
                self.name = _langchain_tool.name.lower()
                self.description = _langchain_tool.description
                self.inputs = _langchain_tool.args.copy()
                for input_content in self.inputs.values():
                    if "title" in input_content:
                        input_content.pop("title")
                    input_content["description"] = ""
                self.output_type = "string"
                self.langchain_tool = _langchain_tool
                self.is_initialized = True

            def forward(self, *args, **kwargs):
                tool_input = kwargs.copy()
                for index, argument in enumerate(args):
                    if index < len(self.inputs):
                        input_key = next(iter(self.inputs))
                        tool_input[input_key] = argument
                return self.langchain_tool.run(tool_input)

        return LangChainToolWrapper(langchain_tool)


def launch_gradio_demo(tool: Tool):
    """
    Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
    `inputs` and `output_type`.

    Args:
        tool (`Tool`): The tool for which to launch the demo.
    """
    try:
        import gradio as gr
    except ImportError:
        raise ImportError("Gradio should be installed in order to launch a gradio demo.")

    TYPE_TO_COMPONENT_CLASS_MAPPING = {
        "boolean": gr.Checkbox,
        "image": gr.Image,
        "audio": gr.Audio,
        "string": gr.Textbox,
        "integer": gr.Textbox,
        "number": gr.Textbox,
    }

    def tool_forward(*args, **kwargs):
        return tool(*args, sanitize_inputs_outputs=True, **kwargs)

    tool_forward.__signature__ = inspect.signature(tool.forward)

    gradio_inputs = []
    for input_name, input_details in tool.inputs.items():
        input_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[input_details["type"]]
        new_component = input_gradio_component_class(label=input_name)
        gradio_inputs.append(new_component)

    output_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[tool.output_type]
    gradio_output = output_gradio_component_class(label="Output")

    gr.Interface(
        fn=tool_forward,
        inputs=gradio_inputs,
        outputs=gradio_output,
        title=tool.name,
        description=tool.description,
        api_name=tool.name,
    ).launch()


def load_tool(
    repo_id,
    model_repo_id: str | None = None,
    token: str | None = None,
    trust_remote_code: bool = False,
    **kwargs,
):
    """
    Main function to quickly load a tool from the Hub.

    <Tip warning={true}>

    Loading a tool means that you'll download the tool and execute it locally.
    ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
    installing a package using pip/npm/apt.

    </Tip>

    Args:
        repo_id (`str`):
            Space repo ID of a tool on the Hub.
        model_repo_id (`str`, *optional*):
            Use this argument to use a different model than the default one for the tool you selected.
        token (`str`, *optional*):
            The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
            login` (stored in `~/.huggingface`).
        trust_remote_code (`bool`, *optional*, defaults to False):
            This needs to be accepted in order to load a tool from Hub.
        kwargs (additional keyword arguments, *optional*):
            Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
            `cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
            will be passed along to its init.
    """
    return Tool.from_hub(
        repo_id,
        model_repo_id=model_repo_id,
        token=token,
        trust_remote_code=trust_remote_code,
        **kwargs,
    )


def add_description(description):
    """
    A decorator that adds a description to a function.
    """

    def inner(func):
        func.description = description
        func.name = func.__name__
        return func

    return inner


class ToolCollection:
    """
    Tool collections enable loading a collection of tools in the agent's toolbox.

    Collections can be loaded from a collection in the Hub or from an MCP server, see:
    - [`ToolCollection.from_hub`]
    - [`ToolCollection.from_mcp`]

    For example and usage, see: [`ToolCollection.from_hub`] and [`ToolCollection.from_mcp`]
    """

    def __init__(self, tools: list[Tool]):
        self.tools = tools

    @classmethod
    def from_hub(
        cls,
        collection_slug: str,
        token: str | None = None,
        trust_remote_code: bool = False,
    ) -> "ToolCollection":
        """Loads a tool collection from the Hub.

        it adds a collection of tools from all Spaces in the collection to the agent's toolbox

        > [!NOTE]
        > Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you'd
        > like for this collection to showcase them.

        Args:
            collection_slug (str): The collection slug referencing the collection.
            token (str, *optional*): The authentication token if the collection is private.
            trust_remote_code (bool, *optional*, defaults to False): Whether to trust the remote code.

        Returns:
            ToolCollection: A tool collection instance loaded with the tools.

        Example:
        ```py
        >>> from smolagents import ToolCollection, CodeAgent

        >>> image_tool_collection = ToolCollection.from_hub("huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
        >>> agent = CodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)

        >>> agent.run("Please draw me a picture of rivers and lakes.")
        ```
        """
        _collection = get_collection(collection_slug, token=token)
        _hub_repo_ids = {item.item_id for item in _collection.items if item.item_type == "space"}

        tools = {Tool.from_hub(repo_id, token, trust_remote_code) for repo_id in _hub_repo_ids}

        return cls(tools)

    @classmethod
    @contextmanager
    def from_mcp(
        cls, server_parameters: "mcp.StdioServerParameters" | dict, trust_remote_code: bool = False
    ) -> "ToolCollection":
        """Automatically load a tool collection from an MCP server.

        This method supports Stdio, Streamable HTTP, and legacy HTTP+SSE MCP servers. Look at the `server_parameters`
        argument for more details on how to connect to each MCP server.

        Note: a separate thread will be spawned to run an asyncio event loop handling
        the MCP server.

        Args:
            server_parameters (`mcp.StdioServerParameters` or `dict`):
                Configuration parameters to connect to the MCP server. This can be:

                - An instance of `mcp.StdioServerParameters` for connecting a Stdio MCP server via standard input/output using a subprocess.

                - A `dict` with at least:
                  - "url": URL of the server.
                  - "transport": Transport protocol to use, one of:
                    - "streamable-http": (recommended) Streamable HTTP transport.
                    - "sse": Legacy HTTP+SSE transport (deprecated).
                  If "transport" is omitted, the legacy "sse" transport is assumed (a deprecation warning will be issued).

                <Deprecated version="1.17.0">
                The HTTP+SSE transport is deprecated and future behavior will default to the Streamable HTTP transport.
                Please pass explicitly the "transport" key.
                </Deprecated>
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether to trust the execution of code from tools defined on the MCP server.
                This option should only be set to `True` if you trust the MCP server,
                and undertand the risks associated with running remote code on your local machine.
                If set to `False`, loading tools from MCP will fail.


        Returns:
            ToolCollection: A tool collection instance.

        Example with a Stdio MCP server:
        ```py
        >>> import os
        >>> from smolagents import ToolCollection, CodeAgent, InferenceClientModel
        >>> from mcp import StdioServerParameters

        >>> model = InferenceClientModel()

        >>> server_parameters = StdioServerParameters(
        >>>     command="uvx",
        >>>     args=["--quiet", "[email protected]"],
        >>>     env={"UV_PYTHON": "3.12", **os.environ},
        >>> )

        >>> with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
        >>>     agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True, model=model)
        >>>     agent.run("Please find a remedy for hangover.")
        ```

        Example with a Streamable HTTP MCP server:
        ```py
        >>> with ToolCollection.from_mcp({"url": "http://127.0.0.1:8000/mcp", "transport": "streamable-http"}, trust_remote_code=True) as tool_collection:
        >>>     agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True, model=model)
        >>>     agent.run("Please find a remedy for hangover.")
        ```
        """
        try:
            from mcpadapt.core import MCPAdapt
            from mcpadapt.smolagents_adapter import SmolAgentsAdapter
        except ImportError:
            raise ImportError(
                """Please install 'mcp' extra to use ToolCollection.from_mcp: `pip install "smolagents[mcp]"`."""
            )
        if isinstance(server_parameters, dict):
            transport = server_parameters.get("transport")
            if transport is None:
                warnings.warn(
                    "Passing a dict as server_parameters without specifying the 'transport' key is deprecated. "
                    "For now, it defaults to the legacy 'sse' (HTTP+SSE) transport, but this default will change "
                    "to 'streamable-http' in version 1.20. Please add the 'transport' key explicitly. ",
                    FutureWarning,
                )
                transport = "sse"
                server_parameters["transport"] = transport
            if transport not in {"sse", "streamable-http"}:
                raise ValueError(
                    f"Unsupported transport: {transport}. Supported transports are 'streamable-http' and 'sse'."
                )
        if not trust_remote_code:
            raise ValueError(
                "Loading tools from MCP requires you to acknowledge you trust the MCP server, "
                "as it will execute code on your local machine: pass `trust_remote_code=True`."
            )
        with MCPAdapt(server_parameters, SmolAgentsAdapter()) as tools:
            yield cls(tools)


def tool(tool_function: Callable) -> Tool:
    """
    Convert a function into an instance of a dynamically created Tool subclass.

    Args:
        tool_function (`Callable`): Function to convert into a Tool subclass.
            Should have type hints for each input and a type hint for the output.
            Should also have a docstring including the description of the function
            and an 'Args:' part where each argument is described.
    """
    tool_json_schema = get_json_schema(tool_function)["function"]
    if "return" not in tool_json_schema:
        raise TypeHintParsingException("Tool return type not found: make sure your function has a return type hint!")

    class SimpleTool(Tool):
        def __init__(self):
            self.is_initialized = True

    # Set the class attributes
    SimpleTool.name = tool_json_schema["name"]
    SimpleTool.description = tool_json_schema["description"]
    SimpleTool.inputs = tool_json_schema["parameters"]["properties"]
    SimpleTool.output_type = tool_json_schema["return"]["type"]

    @wraps(tool_function)
    def wrapped_function(*args, **kwargs):
        return tool_function(*args, **kwargs)

    # Bind the copied function to the forward method
    SimpleTool.forward = staticmethod(wrapped_function)

    # Get the signature parameters of the tool function
    sig = inspect.signature(tool_function)
    # - Add "self" as first parameter to tool_function signature
    new_sig = sig.replace(
        parameters=[inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD)] + list(sig.parameters.values())
    )
    # - Set the signature of the forward method
    SimpleTool.forward.__signature__ = new_sig

    # Create and attach the source code of the dynamically created tool class and forward method
    # - Get the source code of tool_function
    tool_source = inspect.getsource(tool_function)
    # - Remove the tool decorator and function definition line
    tool_source_body = "\n".join(tool_source.split("\n")[2:])
    # - Dedent
    tool_source_body = textwrap.dedent(tool_source_body)
    # - Create the forward method source, including def line and indentation
    forward_method_source = f"def forward{str(new_sig)}:\n{textwrap.indent(tool_source_body, '    ')}"
    # - Create the class source
    class_source = (
        textwrap.dedent(f"""
        class SimpleTool(Tool):
            name: str = "{tool_json_schema["name"]}"
            description: str = {json.dumps(textwrap.dedent(tool_json_schema["description"]).strip())}
            inputs: dict[str, dict[str, str]] = {tool_json_schema["parameters"]["properties"]}
            output_type: str = "{tool_json_schema["return"]["type"]}"

            def __init__(self):
                self.is_initialized = True

        """)
        + textwrap.indent(forward_method_source, "    ")  # indent for class method
    )
    # - Store the source code on both class and method for inspection
    SimpleTool.__source__ = class_source
    SimpleTool.forward.__source__ = forward_method_source

    simple_tool = SimpleTool()
    return simple_tool


class PipelineTool(Tool):
    """
    A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will
    need to specify:

    - **model_class** (`type`) -- The class to use to load the model in this tool.
    - **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
    - **pre_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
      pre-processor
    - **post_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
      post-processor (when different from the pre-processor).

    Args:
        model (`str` or [`transformers.PreTrainedModel`], *optional*):
            The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
            value of the class attribute `default_checkpoint`.
        pre_processor (`str` or `Any`, *optional*):
            The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a
            tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if
            unset.
        post_processor (`str` or `Any`, *optional*):
            The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a
            tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if
            unset.
        device (`int`, `str` or `torch.device`, *optional*):
            The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the
            CPU otherwise.
        device_map (`str` or `dict`, *optional*):
            If passed along, will be used to instantiate the model.
        model_kwargs (`dict`, *optional*):
            Any keyword argument to send to the model instantiation.
        token (`str`, *optional*):
            The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
            running `huggingface-cli login` (stored in `~/.huggingface`).
        hub_kwargs (additional keyword arguments, *optional*):
            Any additional keyword argument to send to the methods that will load the data from the Hub.
    """

    pre_processor_class = None
    model_class = None
    post_processor_class = None
    default_checkpoint = None
    description = "This is a pipeline tool"
    name = "pipeline"
    inputs = {"prompt": str}
    output_type = str
    skip_forward_signature_validation = True

    def __init__(
        self,
        model=None,
        pre_processor=None,
        post_processor=None,
        device=None,
        device_map=None,
        model_kwargs=None,
        token=None,
        **hub_kwargs,
    ):
        if not _is_package_available("accelerate") or not _is_package_available("torch"):
            raise ModuleNotFoundError(
                "Please install 'transformers' extra to use a PipelineTool: `pip install 'smolagents[transformers]'`"
            )

        if model is None:
            if self.default_checkpoint is None:
                raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
            model = self.default_checkpoint
        if pre_processor is None:
            pre_processor = model

        self.model = model
        self.pre_processor = pre_processor
        self.post_processor = post_processor
        self.device = device
        self.device_map = device_map
        self.model_kwargs = {} if model_kwargs is None else model_kwargs
        if device_map is not None:
            self.model_kwargs["device_map"] = device_map
        self.hub_kwargs = hub_kwargs
        self.hub_kwargs["token"] = token

        super().__init__()

    def setup(self):
        """
        Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
        """
        if isinstance(self.pre_processor, str):
            if self.pre_processor_class is None:
                from transformers import AutoProcessor

                self.pre_processor_class = AutoProcessor
            self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)

        if isinstance(self.model, str):
            self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)

        if self.post_processor is None:
            self.post_processor = self.pre_processor
        elif isinstance(self.post_processor, str):
            if self.post_processor_class is None:
                from transformers import AutoProcessor

                self.post_processor_class = AutoProcessor
            self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)

        if self.device is None:
            if self.device_map is not None:
                self.device = list(self.model.hf_device_map.values())[0]
            else:
                from accelerate import PartialState

                self.device = PartialState().default_device

        if self.device_map is None:
            self.model.to(self.device)

        super().setup()

    def encode(self, raw_inputs):
        """
        Uses the `pre_processor` to prepare the inputs for the `model`.
        """
        return self.pre_processor(raw_inputs)

    def forward(self, inputs):
        """
        Sends the inputs through the `model`.
        """
        import torch

        with torch.no_grad():
            return self.model(**inputs)

    def decode(self, outputs):
        """
        Uses the `post_processor` to decode the model output.
        """
        return self.post_processor(outputs)

    def __call__(self, *args, sanitize_inputs_outputs: bool = False, **kwargs):
        import torch
        from accelerate.utils import send_to_device

        if not self.is_initialized:
            self.setup()

        if sanitize_inputs_outputs:
            args, kwargs = handle_agent_input_types(*args, **kwargs)
        encoded_inputs = self.encode(*args, **kwargs)

        tensor_inputs = {k: v for k, v in encoded_inputs.items() if isinstance(v, torch.Tensor)}
        non_tensor_inputs = {k: v for k, v in encoded_inputs.items() if not isinstance(v, torch.Tensor)}

        encoded_inputs = send_to_device(tensor_inputs, self.device)
        outputs = self.forward({**encoded_inputs, **non_tensor_inputs})
        outputs = send_to_device(outputs, "cpu")
        decoded_outputs = self.decode(outputs)
        if sanitize_inputs_outputs:
            decoded_outputs = handle_agent_output_types(decoded_outputs, self.output_type)
        return decoded_outputs


def get_tools_definition_code(tools: dict[str, Tool]) -> str:
    tool_codes = []
    for tool in tools.values():
        validate_tool_attributes(tool.__class__, check_imports=False)
        tool_code = instance_to_source(tool, base_cls=Tool)
        tool_code = tool_code.replace("from smolagents.tools import Tool", "")
        tool_code += f"\n\n{tool.name} = {tool.__class__.__name__}()\n"
        tool_codes.append(tool_code)

    tool_definition_code = "\n".join([f"import {module}" for module in BASE_BUILTIN_MODULES])
    tool_definition_code += textwrap.dedent(
        """
    from typing import Any

    class Tool:
        def __call__(self, *args, **kwargs):
            return self.forward(*args, **kwargs)

        def forward(self, *args, **kwargs):
            pass # to be implemented in child class
    """
    )
    tool_definition_code += "\n\n".join(tool_codes)
    return tool_definition_code


def validate_tool_arguments(tool: Tool, arguments: Any) -> str | None:
    if isinstance(arguments, dict):
        for key, value in arguments.items():
            if key not in tool.inputs:
                return f"Argument {key} is not in the tool's input schema."

            parsed_type = _get_json_schema_type(type(value))["type"]

            if parsed_type != tool.inputs[key]["type"] and not tool.inputs[key]["type"] == "any":
                return f"Argument {key} has type '{parsed_type}' but should be '{tool.inputs[key]['type']}'."
        for key in tool.inputs:
            if key not in arguments:
                return f"Argument {key} is required."
        return None
    else:
        expected_type = list(tool.inputs.values())[0]["type"]
        if _get_json_schema_type(type(arguments))["type"] != expected_type and not expected_type == "any":
            return f"Argument has type '{type(arguments).__name__}' but should be '{expected_type}'."
        return None


__all__ = [
    "AUTHORIZED_TYPES",
    "Tool",
    "tool",
    "load_tool",
    "launch_gradio_demo",
    "ToolCollection",
]