File size: 50,164 Bytes
d7949de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import ast
import inspect
import json
import logging
import os
import sys
import tempfile
import textwrap
import types
import warnings
from collections.abc import Callable
from contextlib import contextmanager
from functools import wraps
from pathlib import Path
from typing import TYPE_CHECKING, Any
from huggingface_hub import (
CommitOperationAdd,
create_commit,
create_repo,
get_collection,
hf_hub_download,
metadata_update,
)
from ._function_type_hints_utils import (
TypeHintParsingException,
_convert_type_hints_to_json_schema,
_get_json_schema_type,
get_imports,
get_json_schema,
)
from .agent_types import handle_agent_input_types, handle_agent_output_types
from .tool_validation import MethodChecker, validate_tool_attributes
from .utils import (
BASE_BUILTIN_MODULES,
_is_package_available,
get_source,
instance_to_source,
is_valid_name,
)
if TYPE_CHECKING:
import mcp
logger = logging.getLogger(__name__)
def validate_after_init(cls):
original_init = cls.__init__
@wraps(original_init)
def new_init(self, *args, **kwargs):
original_init(self, *args, **kwargs)
self.validate_arguments()
cls.__init__ = new_init
return cls
AUTHORIZED_TYPES = [
"string",
"boolean",
"integer",
"number",
"image",
"audio",
"array",
"object",
"any",
"null",
]
CONVERSION_DICT = {"str": "string", "int": "integer", "float": "number"}
class Tool:
"""
A base class for the functions used by the agent. Subclass this and implement the `forward` method as well as the
following class attributes:
- **description** (`str`) -- A short description of what your tool does, the inputs it expects and the output(s) it
will return. For instance 'This is a tool that downloads a file from a `url`. It takes the `url` as input, and
returns the text contained in the file'.
- **name** (`str`) -- A performative name that will be used for your tool in the prompt to the agent. For instance
`"text-classifier"` or `"image_generator"`.
- **inputs** (`Dict[str, Dict[str, Union[str, type, bool]]]`) -- The dict of modalities expected for the inputs.
It has one `type`key and a `description`key.
This is used by `launch_gradio_demo` or to make a nice space from your tool, and also can be used in the generated
description for your tool.
- **output_type** (`type`) -- The type of the tool output. This is used by `launch_gradio_demo`
or to make a nice space from your tool, and also can be used in the generated description for your tool.
You can also override the method [`~Tool.setup`] if your tool has an expensive operation to perform before being
usable (such as loading a model). [`~Tool.setup`] will be called the first time you use your tool, but not at
instantiation.
"""
name: str
description: str
inputs: dict[str, dict[str, str | type | bool]]
output_type: str
def __init__(self, *args, **kwargs):
self.is_initialized = False
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
validate_after_init(cls)
def validate_arguments(self):
required_attributes = {
"description": str,
"name": str,
"inputs": dict,
"output_type": str,
}
# Validate class attributes
for attr, expected_type in required_attributes.items():
attr_value = getattr(self, attr, None)
if attr_value is None:
raise TypeError(f"You must set an attribute {attr}.")
if not isinstance(attr_value, expected_type):
raise TypeError(
f"Attribute {attr} should have type {expected_type.__name__}, got {type(attr_value)} instead."
)
# - Validate name
if not is_valid_name(self.name):
raise Exception(
f"Invalid Tool name '{self.name}': must be a valid Python identifier and not a reserved keyword"
)
# Validate inputs
for input_name, input_content in self.inputs.items():
assert isinstance(input_content, dict), f"Input '{input_name}' should be a dictionary."
assert "type" in input_content and "description" in input_content, (
f"Input '{input_name}' should have keys 'type' and 'description', has only {list(input_content.keys())}."
)
if input_content["type"] not in AUTHORIZED_TYPES:
raise Exception(
f"Input '{input_name}': type '{input_content['type']}' is not an authorized value, should be one of {AUTHORIZED_TYPES}."
)
# Validate output type
assert getattr(self, "output_type", None) in AUTHORIZED_TYPES
# Validate forward function signature, except for Tools that use a "generic" signature (PipelineTool, SpaceToolWrapper, LangChainToolWrapper)
if not (
hasattr(self, "skip_forward_signature_validation")
and getattr(self, "skip_forward_signature_validation") is True
):
signature = inspect.signature(self.forward)
actual_keys = set(key for key in signature.parameters.keys() if key != "self")
expected_keys = set(self.inputs.keys())
if actual_keys != expected_keys:
raise Exception(
f"In tool '{self.name}', 'forward' method parameters were {actual_keys}, but expected {expected_keys}. "
f"It should take 'self' as its first argument, then its next arguments should match the keys of tool attribute 'inputs'."
)
json_schema = _convert_type_hints_to_json_schema(self.forward, error_on_missing_type_hints=False)[
"properties"
] # This function will not raise an error on missing docstrings, contrary to get_json_schema
for key, value in self.inputs.items():
assert key in json_schema, (
f"Input '{key}' should be present in function signature, found only {json_schema.keys()}"
)
if "nullable" in value:
assert "nullable" in json_schema[key], (
f"Nullable argument '{key}' in inputs should have key 'nullable' set to True in function signature."
)
if key in json_schema and "nullable" in json_schema[key]:
assert "nullable" in value, (
f"Nullable argument '{key}' in function signature should have key 'nullable' set to True in inputs."
)
def forward(self, *args, **kwargs):
return NotImplementedError("Write this method in your subclass of `Tool`.")
def __call__(self, *args, sanitize_inputs_outputs: bool = False, **kwargs):
if not self.is_initialized:
self.setup()
# Handle the arguments might be passed as a single dictionary
if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], dict):
potential_kwargs = args[0]
# If the dictionary keys match our input parameters, convert it to kwargs
if all(key in self.inputs for key in potential_kwargs):
args = ()
kwargs = potential_kwargs
if sanitize_inputs_outputs:
args, kwargs = handle_agent_input_types(*args, **kwargs)
outputs = self.forward(*args, **kwargs)
if sanitize_inputs_outputs:
outputs = handle_agent_output_types(outputs, self.output_type)
return outputs
def setup(self):
"""
Overwrite this method here for any operation that is expensive and needs to be executed before you start using
your tool. Such as loading a big model.
"""
self.is_initialized = True
def to_dict(self) -> dict:
"""Returns a dictionary representing the tool"""
class_name = self.__class__.__name__
if type(self).__name__ == "SimpleTool":
# Check that imports are self-contained
source_code = get_source(self.forward).replace("@tool", "")
forward_node = ast.parse(source_code)
# If tool was created using '@tool' decorator, it has only a forward pass, so it's simpler to just get its code
method_checker = MethodChecker(set())
method_checker.visit(forward_node)
if len(method_checker.errors) > 0:
errors = [f"- {error}" for error in method_checker.errors]
raise (ValueError(f"SimpleTool validation failed for {self.name}:\n" + "\n".join(errors)))
forward_source_code = get_source(self.forward)
tool_code = textwrap.dedent(
f"""
from smolagents import Tool
from typing import Any, Optional
class {class_name}(Tool):
name = "{self.name}"
description = {json.dumps(textwrap.dedent(self.description).strip())}
inputs = {repr(self.inputs)}
output_type = "{self.output_type}"
"""
).strip()
import re
def add_self_argument(source_code: str) -> str:
"""Add 'self' as first argument to a function definition if not present."""
pattern = r"def forward\(((?!self)[^)]*)\)"
def replacement(match):
args = match.group(1).strip()
if args: # If there are other arguments
return f"def forward(self, {args})"
return "def forward(self)"
return re.sub(pattern, replacement, source_code)
forward_source_code = forward_source_code.replace(self.name, "forward")
forward_source_code = add_self_argument(forward_source_code)
forward_source_code = forward_source_code.replace("@tool", "").strip()
tool_code += "\n\n" + textwrap.indent(forward_source_code, " ")
else: # If the tool was not created by the @tool decorator, it was made by subclassing Tool
if type(self).__name__ in [
"SpaceToolWrapper",
"LangChainToolWrapper",
"GradioToolWrapper",
]:
raise ValueError(
"Cannot save objects created with from_space, from_langchain or from_gradio, as this would create errors."
)
validate_tool_attributes(self.__class__)
tool_code = "from typing import Any, Optional\n" + instance_to_source(self, base_cls=Tool)
requirements = {el for el in get_imports(tool_code) if el not in sys.stdlib_module_names} | {"smolagents"}
return {"name": self.name, "code": tool_code, "requirements": sorted(requirements)}
@classmethod
def from_dict(cls, tool_dict: dict[str, Any], **kwargs) -> "Tool":
"""
Create tool from a dictionary representation.
Args:
tool_dict (`dict[str, Any]`): Dictionary representation of the tool.
**kwargs: Additional keyword arguments to pass to the tool's constructor.
Returns:
`Tool`: Tool object.
"""
if "code" not in tool_dict:
raise ValueError("Tool dictionary must contain 'code' key with the tool source code")
return cls.from_code(tool_dict["code"], **kwargs)
def save(self, output_dir: str | Path, tool_file_name: str = "tool", make_gradio_app: bool = True):
"""
Saves the relevant code files for your tool so it can be pushed to the Hub. This will copy the code of your
tool in `output_dir` as well as autogenerate:
- a `{tool_file_name}.py` file containing the logic for your tool.
If you pass `make_gradio_app=True`, this will also write:
- an `app.py` file providing a UI for your tool when it is exported to a Space with `tool.push_to_hub()`
- a `requirements.txt` containing the names of the modules used by your tool (as detected when inspecting its
code)
Args:
output_dir (`str` or `Path`): The folder in which you want to save your tool.
tool_file_name (`str`, *optional*): The file name in which you want to save your tool.
make_gradio_app (`bool`, *optional*, defaults to True): Whether to also export a `requirements.txt` file and Gradio UI.
"""
# Ensure output directory exists
output_path = Path(output_dir)
output_path.mkdir(parents=True, exist_ok=True)
# Save tool file
self._write_file(output_path / f"{tool_file_name}.py", self._get_tool_code())
if make_gradio_app:
# Save app file
self._write_file(output_path / "app.py", self._get_gradio_app_code(tool_module_name=tool_file_name))
# Save requirements file
self._write_file(output_path / "requirements.txt", self._get_requirements())
def _write_file(self, file_path: Path, content: str) -> None:
"""Writes content to a file with UTF-8 encoding."""
file_path.write_text(content, encoding="utf-8")
def push_to_hub(
self,
repo_id: str,
commit_message: str = "Upload tool",
private: bool | None = None,
token: bool | str | None = None,
create_pr: bool = False,
) -> str:
"""
Upload the tool to the Hub.
Parameters:
repo_id (`str`):
The name of the repository you want to push your tool to. It should contain your organization name when
pushing to a given organization.
commit_message (`str`, *optional*, defaults to `"Upload tool"`):
Message to commit while pushing.
private (`bool`, *optional*):
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists.
token (`bool` or `str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
create_pr (`bool`, *optional*, defaults to `False`):
Whether to create a PR with the uploaded files or directly commit.
"""
# Initialize repository
repo_id = self._initialize_hub_repo(repo_id, token, private)
# Prepare files for commit
additions = self._prepare_hub_files()
# Create commit
return create_commit(
repo_id=repo_id,
operations=additions,
commit_message=commit_message,
token=token,
create_pr=create_pr,
repo_type="space",
)
@staticmethod
def _initialize_hub_repo(repo_id: str, token: bool | str | None, private: bool | None) -> str:
"""Initialize repository on Hugging Face Hub."""
repo_url = create_repo(
repo_id=repo_id,
token=token,
private=private,
exist_ok=True,
repo_type="space",
space_sdk="gradio",
)
metadata_update(repo_url.repo_id, {"tags": ["smolagents", "tool"]}, repo_type="space", token=token)
return repo_url.repo_id
def _prepare_hub_files(self) -> list:
"""Prepare files for Hub commit."""
additions = [
# Add tool code
CommitOperationAdd(
path_in_repo="tool.py",
path_or_fileobj=self._get_tool_code().encode(),
),
# Add Gradio app
CommitOperationAdd(
path_in_repo="app.py",
path_or_fileobj=self._get_gradio_app_code().encode(),
),
# Add requirements
CommitOperationAdd(
path_in_repo="requirements.txt",
path_or_fileobj=self._get_requirements().encode(),
),
]
return additions
def _get_tool_code(self) -> str:
"""Get the tool's code."""
return self.to_dict()["code"]
def _get_gradio_app_code(self, tool_module_name: str = "tool") -> str:
"""Get the Gradio app code."""
class_name = self.__class__.__name__
return textwrap.dedent(
f"""\
from smolagents import launch_gradio_demo
from {tool_module_name} import {class_name}
tool = {class_name}()
launch_gradio_demo(tool)
"""
)
def _get_requirements(self) -> str:
"""Get the requirements."""
return "\n".join(self.to_dict()["requirements"])
@classmethod
def from_hub(
cls,
repo_id: str,
token: str | None = None,
trust_remote_code: bool = False,
**kwargs,
):
"""
Loads a tool defined on the Hub.
<Tip warning={true}>
Loading a tool from the Hub means that you'll download the tool and execute it locally.
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
installing a package using pip/npm/apt.
</Tip>
Args:
repo_id (`str`):
The name of the Space repo on the Hub where your tool is defined.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running
`huggingface-cli login` (stored in `~/.huggingface`).
trust_remote_code(`str`, *optional*, defaults to False):
This flags marks that you understand the risk of running remote code and that you trust this tool.
If not setting this to True, loading the tool from Hub will fail.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the
others will be passed along to its init.
"""
if not trust_remote_code:
raise ValueError(
"Loading a tool from Hub requires to acknowledge you trust its code: to do so, pass `trust_remote_code=True`."
)
# Get the tool's tool.py file.
tool_file = hf_hub_download(
repo_id,
"tool.py",
token=token,
repo_type="space",
cache_dir=kwargs.get("cache_dir"),
force_download=kwargs.get("force_download"),
proxies=kwargs.get("proxies"),
revision=kwargs.get("revision"),
subfolder=kwargs.get("subfolder"),
local_files_only=kwargs.get("local_files_only"),
)
tool_code = Path(tool_file).read_text()
return Tool.from_code(tool_code, **kwargs)
@classmethod
def from_code(cls, tool_code: str, **kwargs):
module = types.ModuleType("dynamic_tool")
exec(tool_code, module.__dict__)
# Find the Tool subclass
tool_class = next(
(
obj
for _, obj in inspect.getmembers(module, inspect.isclass)
if issubclass(obj, Tool) and obj is not Tool
),
None,
)
if tool_class is None:
raise ValueError("No Tool subclass found in the code.")
if not isinstance(tool_class.inputs, dict):
tool_class.inputs = ast.literal_eval(tool_class.inputs)
return tool_class(**kwargs)
@staticmethod
def from_space(
space_id: str,
name: str,
description: str,
api_name: str | None = None,
token: str | None = None,
):
"""
Creates a [`Tool`] from a Space given its id on the Hub.
Args:
space_id (`str`):
The id of the Space on the Hub.
name (`str`):
The name of the tool.
description (`str`):
The description of the tool.
api_name (`str`, *optional*):
The specific api_name to use, if the space has several tabs. If not precised, will default to the first available api.
token (`str`, *optional*):
Add your token to access private spaces or increase your GPU quotas.
Returns:
[`Tool`]:
The Space, as a tool.
Examples:
```py
>>> image_generator = Tool.from_space(
... space_id="black-forest-labs/FLUX.1-schnell",
... name="image-generator",
... description="Generate an image from a prompt"
... )
>>> image = image_generator("Generate an image of a cool surfer in Tahiti")
```
```py
>>> face_swapper = Tool.from_space(
... "tuan2308/face-swap",
... "face_swapper",
... "Tool that puts the face shown on the first image on the second image. You can give it paths to images.",
... )
>>> image = face_swapper('./aymeric.jpeg', './ruth.jpg')
```
"""
from gradio_client import Client, handle_file
class SpaceToolWrapper(Tool):
skip_forward_signature_validation = True
def __init__(
self,
space_id: str,
name: str,
description: str,
api_name: str | None = None,
token: str | None = None,
):
self.name = name
self.description = description
self.client = Client(space_id, hf_token=token)
space_description = self.client.view_api(return_format="dict", print_info=False)["named_endpoints"]
# If api_name is not defined, take the first of the available APIs for this space
if api_name is None:
api_name = list(space_description.keys())[0]
logger.warning(
f"Since `api_name` was not defined, it was automatically set to the first available API: `{api_name}`."
)
self.api_name = api_name
try:
space_description_api = space_description[api_name]
except KeyError:
raise KeyError(f"Could not find specified {api_name=} among available api names.")
self.inputs = {}
for parameter in space_description_api["parameters"]:
if not parameter["parameter_has_default"]:
parameter_type = parameter["type"]["type"]
if parameter_type == "object":
parameter_type = "any"
self.inputs[parameter["parameter_name"]] = {
"type": parameter_type,
"description": parameter["python_type"]["description"],
}
output_component = space_description_api["returns"][0]["component"]
if output_component == "Image":
self.output_type = "image"
elif output_component == "Audio":
self.output_type = "audio"
else:
self.output_type = "any"
self.is_initialized = True
def sanitize_argument_for_prediction(self, arg):
from gradio_client.utils import is_http_url_like
from PIL.Image import Image
if isinstance(arg, Image):
temp_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
arg.save(temp_file.name)
arg = temp_file.name
if (
(isinstance(arg, str) and os.path.isfile(arg))
or (isinstance(arg, Path) and arg.exists() and arg.is_file())
or is_http_url_like(arg)
):
arg = handle_file(arg)
return arg
def forward(self, *args, **kwargs):
# Preprocess args and kwargs:
args = list(args)
for i, arg in enumerate(args):
args[i] = self.sanitize_argument_for_prediction(arg)
for arg_name, arg in kwargs.items():
kwargs[arg_name] = self.sanitize_argument_for_prediction(arg)
output = self.client.predict(*args, api_name=self.api_name, **kwargs)
if isinstance(output, tuple) or isinstance(output, list):
return output[
0
] # Sometime the space also returns the generation seed, in which case the result is at index 0
return output
return SpaceToolWrapper(
space_id=space_id,
name=name,
description=description,
api_name=api_name,
token=token,
)
@staticmethod
def from_gradio(gradio_tool):
"""
Creates a [`Tool`] from a gradio tool.
"""
import inspect
class GradioToolWrapper(Tool):
def __init__(self, _gradio_tool):
self.name = _gradio_tool.name
self.description = _gradio_tool.description
self.output_type = "string"
self._gradio_tool = _gradio_tool
func_args = list(inspect.signature(_gradio_tool.run).parameters.items())
self.inputs = {
key: {"type": CONVERSION_DICT[value.annotation], "description": ""} for key, value in func_args
}
self.forward = self._gradio_tool.run
return GradioToolWrapper(gradio_tool)
@staticmethod
def from_langchain(langchain_tool):
"""
Creates a [`Tool`] from a langchain tool.
"""
class LangChainToolWrapper(Tool):
skip_forward_signature_validation = True
def __init__(self, _langchain_tool):
self.name = _langchain_tool.name.lower()
self.description = _langchain_tool.description
self.inputs = _langchain_tool.args.copy()
for input_content in self.inputs.values():
if "title" in input_content:
input_content.pop("title")
input_content["description"] = ""
self.output_type = "string"
self.langchain_tool = _langchain_tool
self.is_initialized = True
def forward(self, *args, **kwargs):
tool_input = kwargs.copy()
for index, argument in enumerate(args):
if index < len(self.inputs):
input_key = next(iter(self.inputs))
tool_input[input_key] = argument
return self.langchain_tool.run(tool_input)
return LangChainToolWrapper(langchain_tool)
def launch_gradio_demo(tool: Tool):
"""
Launches a gradio demo for a tool. The corresponding tool class needs to properly implement the class attributes
`inputs` and `output_type`.
Args:
tool (`Tool`): The tool for which to launch the demo.
"""
try:
import gradio as gr
except ImportError:
raise ImportError("Gradio should be installed in order to launch a gradio demo.")
TYPE_TO_COMPONENT_CLASS_MAPPING = {
"boolean": gr.Checkbox,
"image": gr.Image,
"audio": gr.Audio,
"string": gr.Textbox,
"integer": gr.Textbox,
"number": gr.Textbox,
}
def tool_forward(*args, **kwargs):
return tool(*args, sanitize_inputs_outputs=True, **kwargs)
tool_forward.__signature__ = inspect.signature(tool.forward)
gradio_inputs = []
for input_name, input_details in tool.inputs.items():
input_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[input_details["type"]]
new_component = input_gradio_component_class(label=input_name)
gradio_inputs.append(new_component)
output_gradio_component_class = TYPE_TO_COMPONENT_CLASS_MAPPING[tool.output_type]
gradio_output = output_gradio_component_class(label="Output")
gr.Interface(
fn=tool_forward,
inputs=gradio_inputs,
outputs=gradio_output,
title=tool.name,
description=tool.description,
api_name=tool.name,
).launch()
def load_tool(
repo_id,
model_repo_id: str | None = None,
token: str | None = None,
trust_remote_code: bool = False,
**kwargs,
):
"""
Main function to quickly load a tool from the Hub.
<Tip warning={true}>
Loading a tool means that you'll download the tool and execute it locally.
ALWAYS inspect the tool you're downloading before loading it within your runtime, as you would do when
installing a package using pip/npm/apt.
</Tip>
Args:
repo_id (`str`):
Space repo ID of a tool on the Hub.
model_repo_id (`str`, *optional*):
Use this argument to use a different model than the default one for the tool you selected.
token (`str`, *optional*):
The token to identify you on hf.co. If unset, will use the token generated when running `huggingface-cli
login` (stored in `~/.huggingface`).
trust_remote_code (`bool`, *optional*, defaults to False):
This needs to be accepted in order to load a tool from Hub.
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments that will be split in two: all arguments relevant to the Hub (such as
`cache_dir`, `revision`, `subfolder`) will be used when downloading the files for your tool, and the others
will be passed along to its init.
"""
return Tool.from_hub(
repo_id,
model_repo_id=model_repo_id,
token=token,
trust_remote_code=trust_remote_code,
**kwargs,
)
def add_description(description):
"""
A decorator that adds a description to a function.
"""
def inner(func):
func.description = description
func.name = func.__name__
return func
return inner
class ToolCollection:
"""
Tool collections enable loading a collection of tools in the agent's toolbox.
Collections can be loaded from a collection in the Hub or from an MCP server, see:
- [`ToolCollection.from_hub`]
- [`ToolCollection.from_mcp`]
For example and usage, see: [`ToolCollection.from_hub`] and [`ToolCollection.from_mcp`]
"""
def __init__(self, tools: list[Tool]):
self.tools = tools
@classmethod
def from_hub(
cls,
collection_slug: str,
token: str | None = None,
trust_remote_code: bool = False,
) -> "ToolCollection":
"""Loads a tool collection from the Hub.
it adds a collection of tools from all Spaces in the collection to the agent's toolbox
> [!NOTE]
> Only Spaces will be fetched, so you can feel free to add models and datasets to your collection if you'd
> like for this collection to showcase them.
Args:
collection_slug (str): The collection slug referencing the collection.
token (str, *optional*): The authentication token if the collection is private.
trust_remote_code (bool, *optional*, defaults to False): Whether to trust the remote code.
Returns:
ToolCollection: A tool collection instance loaded with the tools.
Example:
```py
>>> from smolagents import ToolCollection, CodeAgent
>>> image_tool_collection = ToolCollection.from_hub("huggingface-tools/diffusion-tools-6630bb19a942c2306a2cdb6f")
>>> agent = CodeAgent(tools=[*image_tool_collection.tools], add_base_tools=True)
>>> agent.run("Please draw me a picture of rivers and lakes.")
```
"""
_collection = get_collection(collection_slug, token=token)
_hub_repo_ids = {item.item_id for item in _collection.items if item.item_type == "space"}
tools = {Tool.from_hub(repo_id, token, trust_remote_code) for repo_id in _hub_repo_ids}
return cls(tools)
@classmethod
@contextmanager
def from_mcp(
cls, server_parameters: "mcp.StdioServerParameters" | dict, trust_remote_code: bool = False
) -> "ToolCollection":
"""Automatically load a tool collection from an MCP server.
This method supports Stdio, Streamable HTTP, and legacy HTTP+SSE MCP servers. Look at the `server_parameters`
argument for more details on how to connect to each MCP server.
Note: a separate thread will be spawned to run an asyncio event loop handling
the MCP server.
Args:
server_parameters (`mcp.StdioServerParameters` or `dict`):
Configuration parameters to connect to the MCP server. This can be:
- An instance of `mcp.StdioServerParameters` for connecting a Stdio MCP server via standard input/output using a subprocess.
- A `dict` with at least:
- "url": URL of the server.
- "transport": Transport protocol to use, one of:
- "streamable-http": (recommended) Streamable HTTP transport.
- "sse": Legacy HTTP+SSE transport (deprecated).
If "transport" is omitted, the legacy "sse" transport is assumed (a deprecation warning will be issued).
<Deprecated version="1.17.0">
The HTTP+SSE transport is deprecated and future behavior will default to the Streamable HTTP transport.
Please pass explicitly the "transport" key.
</Deprecated>
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether to trust the execution of code from tools defined on the MCP server.
This option should only be set to `True` if you trust the MCP server,
and undertand the risks associated with running remote code on your local machine.
If set to `False`, loading tools from MCP will fail.
Returns:
ToolCollection: A tool collection instance.
Example with a Stdio MCP server:
```py
>>> import os
>>> from smolagents import ToolCollection, CodeAgent, InferenceClientModel
>>> from mcp import StdioServerParameters
>>> model = InferenceClientModel()
>>> server_parameters = StdioServerParameters(
>>> command="uvx",
>>> args=["--quiet", "[email protected]"],
>>> env={"UV_PYTHON": "3.12", **os.environ},
>>> )
>>> with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
>>> agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True, model=model)
>>> agent.run("Please find a remedy for hangover.")
```
Example with a Streamable HTTP MCP server:
```py
>>> with ToolCollection.from_mcp({"url": "http://127.0.0.1:8000/mcp", "transport": "streamable-http"}, trust_remote_code=True) as tool_collection:
>>> agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True, model=model)
>>> agent.run("Please find a remedy for hangover.")
```
"""
try:
from mcpadapt.core import MCPAdapt
from mcpadapt.smolagents_adapter import SmolAgentsAdapter
except ImportError:
raise ImportError(
"""Please install 'mcp' extra to use ToolCollection.from_mcp: `pip install "smolagents[mcp]"`."""
)
if isinstance(server_parameters, dict):
transport = server_parameters.get("transport")
if transport is None:
warnings.warn(
"Passing a dict as server_parameters without specifying the 'transport' key is deprecated. "
"For now, it defaults to the legacy 'sse' (HTTP+SSE) transport, but this default will change "
"to 'streamable-http' in version 1.20. Please add the 'transport' key explicitly. ",
FutureWarning,
)
transport = "sse"
server_parameters["transport"] = transport
if transport not in {"sse", "streamable-http"}:
raise ValueError(
f"Unsupported transport: {transport}. Supported transports are 'streamable-http' and 'sse'."
)
if not trust_remote_code:
raise ValueError(
"Loading tools from MCP requires you to acknowledge you trust the MCP server, "
"as it will execute code on your local machine: pass `trust_remote_code=True`."
)
with MCPAdapt(server_parameters, SmolAgentsAdapter()) as tools:
yield cls(tools)
def tool(tool_function: Callable) -> Tool:
"""
Convert a function into an instance of a dynamically created Tool subclass.
Args:
tool_function (`Callable`): Function to convert into a Tool subclass.
Should have type hints for each input and a type hint for the output.
Should also have a docstring including the description of the function
and an 'Args:' part where each argument is described.
"""
tool_json_schema = get_json_schema(tool_function)["function"]
if "return" not in tool_json_schema:
raise TypeHintParsingException("Tool return type not found: make sure your function has a return type hint!")
class SimpleTool(Tool):
def __init__(self):
self.is_initialized = True
# Set the class attributes
SimpleTool.name = tool_json_schema["name"]
SimpleTool.description = tool_json_schema["description"]
SimpleTool.inputs = tool_json_schema["parameters"]["properties"]
SimpleTool.output_type = tool_json_schema["return"]["type"]
@wraps(tool_function)
def wrapped_function(*args, **kwargs):
return tool_function(*args, **kwargs)
# Bind the copied function to the forward method
SimpleTool.forward = staticmethod(wrapped_function)
# Get the signature parameters of the tool function
sig = inspect.signature(tool_function)
# - Add "self" as first parameter to tool_function signature
new_sig = sig.replace(
parameters=[inspect.Parameter("self", inspect.Parameter.POSITIONAL_OR_KEYWORD)] + list(sig.parameters.values())
)
# - Set the signature of the forward method
SimpleTool.forward.__signature__ = new_sig
# Create and attach the source code of the dynamically created tool class and forward method
# - Get the source code of tool_function
tool_source = inspect.getsource(tool_function)
# - Remove the tool decorator and function definition line
tool_source_body = "\n".join(tool_source.split("\n")[2:])
# - Dedent
tool_source_body = textwrap.dedent(tool_source_body)
# - Create the forward method source, including def line and indentation
forward_method_source = f"def forward{str(new_sig)}:\n{textwrap.indent(tool_source_body, ' ')}"
# - Create the class source
class_source = (
textwrap.dedent(f"""
class SimpleTool(Tool):
name: str = "{tool_json_schema["name"]}"
description: str = {json.dumps(textwrap.dedent(tool_json_schema["description"]).strip())}
inputs: dict[str, dict[str, str]] = {tool_json_schema["parameters"]["properties"]}
output_type: str = "{tool_json_schema["return"]["type"]}"
def __init__(self):
self.is_initialized = True
""")
+ textwrap.indent(forward_method_source, " ") # indent for class method
)
# - Store the source code on both class and method for inspection
SimpleTool.__source__ = class_source
SimpleTool.forward.__source__ = forward_method_source
simple_tool = SimpleTool()
return simple_tool
class PipelineTool(Tool):
"""
A [`Tool`] tailored towards Transformer models. On top of the class attributes of the base class [`Tool`], you will
need to specify:
- **model_class** (`type`) -- The class to use to load the model in this tool.
- **default_checkpoint** (`str`) -- The default checkpoint that should be used when the user doesn't specify one.
- **pre_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
pre-processor
- **post_processor_class** (`type`, *optional*, defaults to [`transformers.AutoProcessor`]) -- The class to use to load the
post-processor (when different from the pre-processor).
Args:
model (`str` or [`transformers.PreTrainedModel`], *optional*):
The name of the checkpoint to use for the model, or the instantiated model. If unset, will default to the
value of the class attribute `default_checkpoint`.
pre_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the pre-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the value of `model` if
unset.
post_processor (`str` or `Any`, *optional*):
The name of the checkpoint to use for the post-processor, or the instantiated pre-processor (can be a
tokenizer, an image processor, a feature extractor or a processor). Will default to the `pre_processor` if
unset.
device (`int`, `str` or `torch.device`, *optional*):
The device on which to execute the model. Will default to any accelerator available (GPU, MPS etc...), the
CPU otherwise.
device_map (`str` or `dict`, *optional*):
If passed along, will be used to instantiate the model.
model_kwargs (`dict`, *optional*):
Any keyword argument to send to the model instantiation.
token (`str`, *optional*):
The token to use as HTTP bearer authorization for remote files. If unset, will use the token generated when
running `huggingface-cli login` (stored in `~/.huggingface`).
hub_kwargs (additional keyword arguments, *optional*):
Any additional keyword argument to send to the methods that will load the data from the Hub.
"""
pre_processor_class = None
model_class = None
post_processor_class = None
default_checkpoint = None
description = "This is a pipeline tool"
name = "pipeline"
inputs = {"prompt": str}
output_type = str
skip_forward_signature_validation = True
def __init__(
self,
model=None,
pre_processor=None,
post_processor=None,
device=None,
device_map=None,
model_kwargs=None,
token=None,
**hub_kwargs,
):
if not _is_package_available("accelerate") or not _is_package_available("torch"):
raise ModuleNotFoundError(
"Please install 'transformers' extra to use a PipelineTool: `pip install 'smolagents[transformers]'`"
)
if model is None:
if self.default_checkpoint is None:
raise ValueError("This tool does not implement a default checkpoint, you need to pass one.")
model = self.default_checkpoint
if pre_processor is None:
pre_processor = model
self.model = model
self.pre_processor = pre_processor
self.post_processor = post_processor
self.device = device
self.device_map = device_map
self.model_kwargs = {} if model_kwargs is None else model_kwargs
if device_map is not None:
self.model_kwargs["device_map"] = device_map
self.hub_kwargs = hub_kwargs
self.hub_kwargs["token"] = token
super().__init__()
def setup(self):
"""
Instantiates the `pre_processor`, `model` and `post_processor` if necessary.
"""
if isinstance(self.pre_processor, str):
if self.pre_processor_class is None:
from transformers import AutoProcessor
self.pre_processor_class = AutoProcessor
self.pre_processor = self.pre_processor_class.from_pretrained(self.pre_processor, **self.hub_kwargs)
if isinstance(self.model, str):
self.model = self.model_class.from_pretrained(self.model, **self.model_kwargs, **self.hub_kwargs)
if self.post_processor is None:
self.post_processor = self.pre_processor
elif isinstance(self.post_processor, str):
if self.post_processor_class is None:
from transformers import AutoProcessor
self.post_processor_class = AutoProcessor
self.post_processor = self.post_processor_class.from_pretrained(self.post_processor, **self.hub_kwargs)
if self.device is None:
if self.device_map is not None:
self.device = list(self.model.hf_device_map.values())[0]
else:
from accelerate import PartialState
self.device = PartialState().default_device
if self.device_map is None:
self.model.to(self.device)
super().setup()
def encode(self, raw_inputs):
"""
Uses the `pre_processor` to prepare the inputs for the `model`.
"""
return self.pre_processor(raw_inputs)
def forward(self, inputs):
"""
Sends the inputs through the `model`.
"""
import torch
with torch.no_grad():
return self.model(**inputs)
def decode(self, outputs):
"""
Uses the `post_processor` to decode the model output.
"""
return self.post_processor(outputs)
def __call__(self, *args, sanitize_inputs_outputs: bool = False, **kwargs):
import torch
from accelerate.utils import send_to_device
if not self.is_initialized:
self.setup()
if sanitize_inputs_outputs:
args, kwargs = handle_agent_input_types(*args, **kwargs)
encoded_inputs = self.encode(*args, **kwargs)
tensor_inputs = {k: v for k, v in encoded_inputs.items() if isinstance(v, torch.Tensor)}
non_tensor_inputs = {k: v for k, v in encoded_inputs.items() if not isinstance(v, torch.Tensor)}
encoded_inputs = send_to_device(tensor_inputs, self.device)
outputs = self.forward({**encoded_inputs, **non_tensor_inputs})
outputs = send_to_device(outputs, "cpu")
decoded_outputs = self.decode(outputs)
if sanitize_inputs_outputs:
decoded_outputs = handle_agent_output_types(decoded_outputs, self.output_type)
return decoded_outputs
def get_tools_definition_code(tools: dict[str, Tool]) -> str:
tool_codes = []
for tool in tools.values():
validate_tool_attributes(tool.__class__, check_imports=False)
tool_code = instance_to_source(tool, base_cls=Tool)
tool_code = tool_code.replace("from smolagents.tools import Tool", "")
tool_code += f"\n\n{tool.name} = {tool.__class__.__name__}()\n"
tool_codes.append(tool_code)
tool_definition_code = "\n".join([f"import {module}" for module in BASE_BUILTIN_MODULES])
tool_definition_code += textwrap.dedent(
"""
from typing import Any
class Tool:
def __call__(self, *args, **kwargs):
return self.forward(*args, **kwargs)
def forward(self, *args, **kwargs):
pass # to be implemented in child class
"""
)
tool_definition_code += "\n\n".join(tool_codes)
return tool_definition_code
def validate_tool_arguments(tool: Tool, arguments: Any) -> str | None:
if isinstance(arguments, dict):
for key, value in arguments.items():
if key not in tool.inputs:
return f"Argument {key} is not in the tool's input schema."
parsed_type = _get_json_schema_type(type(value))["type"]
if parsed_type != tool.inputs[key]["type"] and not tool.inputs[key]["type"] == "any":
return f"Argument {key} has type '{parsed_type}' but should be '{tool.inputs[key]['type']}'."
for key in tool.inputs:
if key not in arguments:
return f"Argument {key} is required."
return None
else:
expected_type = list(tool.inputs.values())[0]["type"]
if _get_json_schema_type(type(arguments))["type"] != expected_type and not expected_type == "any":
return f"Argument has type '{type(arguments).__name__}' but should be '{expected_type}'."
return None
__all__ = [
"AUTHORIZED_TYPES",
"Tool",
"tool",
"load_tool",
"launch_gradio_demo",
"ToolCollection",
]
|