File size: 3,562 Bytes
cc4dd24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import pytest
AGENT_DICTS = {
"v1.9": {
"tools": [],
"model": {
"class": "InferenceClientModel",
"data": {
"last_input_token_count": None,
"last_output_token_count": None,
"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct",
"provider": None,
},
},
"managed_agents": {},
"prompt_templates": {
"system_prompt": "dummy system prompt",
"planning": {
"initial_facts": "dummy planning initial facts",
"initial_plan": "dummy planning initial plan",
"update_facts_pre_messages": "dummy planning update facts pre messages",
"update_facts_post_messages": "dummy planning update facts post messages",
"update_plan_pre_messages": "dummy planning update plan pre messages",
"update_plan_post_messages": "dummy planning update plan post messages",
},
"managed_agent": {
"task": "dummy managed agent task",
"report": "dummy managed agent report",
},
"final_answer": {
"pre_messages": "dummy final answer pre messages",
"post_messages": "dummy final answer post messages",
},
},
"max_steps": 10,
"verbosity_level": 2,
"grammar": None,
"planning_interval": 2,
"name": "test_agent",
"description": "dummy description",
"requirements": ["smolagents"],
"authorized_imports": ["pandas"],
},
# Added: executor_type, executor_kwargs, max_print_outputs_length
"v1.10": {
"tools": [],
"model": {
"class": "InferenceClientModel",
"data": {
"last_input_token_count": None,
"last_output_token_count": None,
"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct",
"provider": None,
},
},
"managed_agents": {},
"prompt_templates": {
"system_prompt": "dummy system prompt",
"planning": {
"initial_facts": "dummy planning initial facts",
"initial_plan": "dummy planning initial plan",
"update_facts_pre_messages": "dummy planning update facts pre messages",
"update_facts_post_messages": "dummy planning update facts post messages",
"update_plan_pre_messages": "dummy planning update plan pre messages",
"update_plan_post_messages": "dummy planning update plan post messages",
},
"managed_agent": {
"task": "dummy managed agent task",
"report": "dummy managed agent report",
},
"final_answer": {
"pre_messages": "dummy final answer pre messages",
"post_messages": "dummy final answer post messages",
},
},
"max_steps": 10,
"verbosity_level": 2,
"grammar": None,
"planning_interval": 2,
"name": "test_agent",
"description": "dummy description",
"requirements": ["smolagents"],
"authorized_imports": ["pandas"],
"executor_type": "local",
"executor_kwargs": {},
"max_print_outputs_length": None,
},
}
@pytest.fixture
def get_agent_dict():
def _get_agent_dict(agent_dict_key):
return AGENT_DICTS[agent_dict_key]
return _get_agent_dict
|