File size: 85,060 Bytes
9c31777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import io
import os
import re
import tempfile
import uuid
import warnings
from collections.abc import Generator
from contextlib import nullcontext as does_not_raise
from dataclasses import dataclass
from pathlib import Path
from textwrap import dedent
from typing import Optional
from unittest.mock import MagicMock, patch
import pytest
from huggingface_hub import (
ChatCompletionOutputFunctionDefinition,
ChatCompletionOutputMessage,
ChatCompletionOutputToolCall,
)
from rich.console import Console
from smolagents import EMPTY_PROMPT_TEMPLATES
from smolagents.agent_types import AgentImage, AgentText
from smolagents.agents import (
AgentError,
AgentMaxStepsError,
AgentToolCallError,
CodeAgent,
MultiStepAgent,
ToolCall,
ToolCallingAgent,
ToolOutput,
populate_template,
)
from smolagents.default_tools import DuckDuckGoSearchTool, FinalAnswerTool, PythonInterpreterTool, VisitWebpageTool
from smolagents.memory import (
ActionStep,
PlanningStep,
TaskStep,
)
from smolagents.models import (
ChatMessage,
ChatMessageToolCall,
ChatMessageToolCallFunction,
InferenceClientModel,
MessageRole,
Model,
TransformersModel,
)
from smolagents.monitoring import AgentLogger, LogLevel, TokenUsage
from smolagents.tools import Tool, tool
from smolagents.utils import (
BASE_BUILTIN_MODULES,
AgentExecutionError,
AgentGenerationError,
AgentToolExecutionError,
)
@dataclass
class ChoiceDeltaToolCallFunction:
arguments: Optional[str] = None
name: Optional[str] = None
@dataclass
class ChoiceDeltaToolCall:
index: Optional[int] = None
id: Optional[str] = None
function: Optional[ChoiceDeltaToolCallFunction] = None
type: Optional[str] = None
@dataclass
class ChoiceDelta:
content: Optional[str] = None
function_call: Optional[str] = None
refusal: Optional[str] = None
role: Optional[str] = None
tool_calls: Optional[list] = None
def get_new_path(suffix="") -> str:
directory = tempfile.mkdtemp()
return os.path.join(directory, str(uuid.uuid4()) + suffix)
@pytest.fixture
def agent_logger():
return AgentLogger(
LogLevel.DEBUG, console=Console(record=True, no_color=True, force_terminal=False, file=io.StringIO())
)
class FakeToolCallModel(Model):
def generate(self, messages, tools_to_call_from=None, stop_sequences=None):
if len(messages) < 3:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="python_interpreter", arguments={"code": "2*3.6452"}
),
)
],
)
else:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="final_answer", arguments={"answer": "7.2904"}),
)
],
)
class FakeToolCallModelImage(Model):
def generate(self, messages, tools_to_call_from=None, stop_sequences=None):
if len(messages) < 3:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="fake_image_generation_tool",
arguments={"prompt": "An image of a cat"},
),
)
],
)
else:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="final_answer", arguments="image.png"),
)
],
)
class FakeToolCallModelVL(Model):
def generate(self, messages, tools_to_call_from=None, stop_sequences=None):
if len(messages) < 3:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="fake_image_understanding_tool",
arguments={
"prompt": "What is in this image?",
"image": "image.png",
},
),
)
],
)
else:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="final_answer", arguments="The image is a cat."),
)
],
)
class FakeCodeModel(Model):
def generate(self, messages, stop_sequences=None):
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. special_marker
<code>
result = 2**3.6452
</code>
""",
)
else: # We're at step 2
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I can now answer the initial question
<code>
final_answer(7.2904)
</code>
""",
)
class FakeCodeModelPlanning(Model):
def generate(self, messages, stop_sequences=None):
prompt = str(messages)
if "planning_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="llm plan update planning_marker",
token_usage=TokenUsage(input_tokens=10, output_tokens=10),
)
elif "action_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. action_marker
<code>
result = 2**3.6452
</code>
""",
token_usage=TokenUsage(input_tokens=10, output_tokens=10),
)
else:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="llm plan again",
token_usage=TokenUsage(input_tokens=10, output_tokens=10),
)
class FakeCodeModelError(Model):
def generate(self, messages, stop_sequences=None):
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. special_marker
<code>
print("Flag!")
def error_function():
raise ValueError("error")
error_function()
</code>
""",
)
else: # We're at step 2
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I faced an error in the previous step.
<code>
final_answer("got an error")
</code>
""",
)
class FakeCodeModelSyntaxError(Model):
def generate(self, messages, stop_sequences=None):
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. special_marker
<code>
a = 2
b = a * 2
print("Failing due to unexpected indent")
print("Ok, calculation done!")
</code>
""",
)
else: # We're at step 2
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I can now answer the initial question
<code>
final_answer("got an error")
</code>
""",
)
class FakeCodeModelImport(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I can answer the question
<code>
import numpy as np
final_answer("got an error")
</code>
""",
)
class FakeCodeModelFunctionDef(Model):
def generate(self, messages, stop_sequences=None):
prompt = str(messages)
if "special_marker" not in prompt:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: Let's define the function. special_marker
<code>
import numpy as np
def moving_average(x, w):
return np.convolve(x, np.ones(w), 'valid') / w
</code>
""",
)
else: # We're at step 2
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I can now answer the initial question
<code>
x, w = [0, 1, 2, 3, 4, 5], 2
res = moving_average(x, w)
final_answer(res)
</code>
""",
)
class FakeCodeModelSingleStep(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. special_marker
<code>
result = python_interpreter(code="2*3.6452")
final_answer(result)
```
""",
)
class FakeCodeModelNoReturn(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: I should multiply 2 by 3.6452. special_marker
<code>
result = python_interpreter(code="2*3.6452")
print(result)
```
""",
)
class TestAgent:
def test_fake_toolcalling_agent(self):
agent = ToolCallingAgent(tools=[PythonInterpreterTool()], model=FakeToolCallModel())
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, str)
assert "7.2904" in output
assert agent.memory.steps[0].task == "What is 2 multiplied by 3.6452?"
assert "7.2904" in agent.memory.steps[1].observations
assert (
agent.memory.steps[2].model_output
== "Tool call call_1: calling 'final_answer' with arguments: {'answer': '7.2904'}"
)
def test_toolcalling_agent_handles_image_tool_outputs(self, shared_datadir):
import PIL.Image
@tool
def fake_image_generation_tool(prompt: str) -> PIL.Image.Image:
"""Tool that generates an image.
Args:
prompt: The prompt
"""
import PIL.Image
return PIL.Image.open(shared_datadir / "000000039769.png")
agent = ToolCallingAgent(
tools=[fake_image_generation_tool], model=FakeToolCallModelImage(), verbosity_level=10
)
output = agent.run("Make me an image.")
assert isinstance(output, AgentImage)
assert isinstance(agent.state["image.png"], PIL.Image.Image)
def test_toolcalling_agent_handles_image_inputs(self, shared_datadir):
import PIL.Image
image = PIL.Image.open(shared_datadir / "000000039769.png") # dummy input
@tool
def fake_image_understanding_tool(prompt: str, image: PIL.Image.Image) -> str:
"""Tool that creates a caption for an image.
Args:
prompt: The prompt
image: The image
"""
return "The image is a cat."
agent = ToolCallingAgent(tools=[fake_image_understanding_tool], model=FakeToolCallModelVL())
output = agent.run("Caption this image.", images=[image])
assert output == "The image is a cat."
def test_fake_code_agent(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModel(), verbosity_level=10)
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, float)
assert output == 7.2904
assert agent.memory.steps[0].task == "What is 2 multiplied by 3.6452?"
assert agent.memory.steps[2].tool_calls == [
ToolCall(name="python_interpreter", arguments="final_answer(7.2904)", id="call_2")
]
def test_additional_args_added_to_task(self):
agent = CodeAgent(tools=[], model=FakeCodeModel())
agent.run(
"What is 2 multiplied by 3.6452?",
additional_args={"instruction": "Remember this."},
)
assert "Remember this" in agent.task
def test_reset_conversations(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModel())
output = agent.run("What is 2 multiplied by 3.6452?", reset=True)
assert output == 7.2904
assert len(agent.memory.steps) == 3
output = agent.run("What is 2 multiplied by 3.6452?", reset=False)
assert output == 7.2904
assert len(agent.memory.steps) == 5
output = agent.run("What is 2 multiplied by 3.6452?", reset=True)
assert output == 7.2904
assert len(agent.memory.steps) == 3
def test_setup_agent_with_empty_toolbox(self):
ToolCallingAgent(model=FakeToolCallModel(), tools=[])
def test_fails_max_steps(self):
agent = CodeAgent(
tools=[PythonInterpreterTool()],
model=FakeCodeModelNoReturn(), # use this callable because it never ends
max_steps=5,
)
answer = agent.run("What is 2 multiplied by 3.6452?")
assert len(agent.memory.steps) == 7 # Task step + 5 action steps + Final answer
assert type(agent.memory.steps[-1].error) is AgentMaxStepsError
assert isinstance(answer, str)
agent = CodeAgent(
tools=[PythonInterpreterTool()],
model=FakeCodeModelNoReturn(), # use this callable because it never ends
max_steps=5,
)
answer = agent.run("What is 2 multiplied by 3.6452?", max_steps=3)
assert len(agent.memory.steps) == 5 # Task step + 3 action steps + Final answer
assert type(agent.memory.steps[-1].error) is AgentMaxStepsError
assert isinstance(answer, str)
def test_tool_descriptions_get_baked_in_system_prompt(self):
tool = PythonInterpreterTool()
tool.name = "fake_tool_name"
tool.description = "fake_tool_description"
agent = CodeAgent(tools=[tool], model=FakeCodeModel())
agent.run("Empty task")
assert agent.system_prompt is not None
assert f"def {tool.name}(" in agent.system_prompt
assert f'"""{tool.description}' in agent.system_prompt
def test_module_imports_get_baked_in_system_prompt(self):
agent = CodeAgent(tools=[], model=FakeCodeModel())
agent.run("Empty task")
for module in BASE_BUILTIN_MODULES:
assert module in agent.system_prompt
def test_init_agent_with_different_toolsets(self):
toolset_1 = []
agent = CodeAgent(tools=toolset_1, model=FakeCodeModel())
assert len(agent.tools) == 1 # when no tools are provided, only the final_answer tool is added by default
toolset_2 = [PythonInterpreterTool(), PythonInterpreterTool()]
with pytest.raises(ValueError) as e:
agent = CodeAgent(tools=toolset_2, model=FakeCodeModel())
assert "Each tool or managed_agent should have a unique name!" in str(e)
with pytest.raises(ValueError) as e:
agent.name = "python_interpreter"
agent.description = "empty"
CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModel(), managed_agents=[agent])
assert "Each tool or managed_agent should have a unique name!" in str(e)
# check that python_interpreter base tool does not get added to CodeAgent
agent = CodeAgent(tools=[], model=FakeCodeModel(), add_base_tools=True)
assert len(agent.tools) == 3 # added final_answer tool + search + visit_webpage
# check that python_interpreter base tool gets added to ToolCallingAgent
agent = ToolCallingAgent(tools=[], model=FakeCodeModel(), add_base_tools=True)
assert len(agent.tools) == 4 # added final_answer tool + search + visit_webpage
def test_function_persistence_across_steps(self):
agent = CodeAgent(
tools=[],
model=FakeCodeModelFunctionDef(),
max_steps=2,
additional_authorized_imports=["numpy"],
verbosity_level=100,
)
res = agent.run("ok")
assert res[0] == 0.5
def test_init_managed_agent(self):
agent = CodeAgent(tools=[], model=FakeCodeModelFunctionDef(), name="managed_agent", description="Empty")
assert agent.name == "managed_agent"
assert agent.description == "Empty"
def test_agent_description_gets_correctly_inserted_in_system_prompt(self):
managed_agent = CodeAgent(
tools=[], model=FakeCodeModelFunctionDef(), name="managed_agent", description="Empty"
)
manager_agent = CodeAgent(
tools=[],
model=FakeCodeModelFunctionDef(),
managed_agents=[managed_agent],
)
assert "You can also give tasks to team members." not in managed_agent.system_prompt
assert "{{managed_agents_descriptions}}" not in managed_agent.system_prompt
assert "You can also give tasks to team members." in manager_agent.system_prompt
def test_replay_shows_logs(self, agent_logger):
agent = CodeAgent(
tools=[],
model=FakeCodeModelImport(),
verbosity_level=0,
additional_authorized_imports=["numpy"],
logger=agent_logger,
)
agent.run("Count to 3")
str_output = agent_logger.console.export_text()
assert "New run" in str_output
assert 'final_answer("got' in str_output
assert "</code>" in str_output
agent = ToolCallingAgent(tools=[PythonInterpreterTool()], model=FakeToolCallModel(), verbosity_level=0)
agent.logger = agent_logger
agent.run("What is 2 multiplied by 3.6452?")
agent.replay()
str_output = agent_logger.console.export_text()
assert "Tool call" in str_output
assert "arguments" in str_output
def test_code_nontrivial_final_answer_works(self):
class FakeCodeModelFinalAnswer(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""<code>
def nested_answer():
final_answer("Correct!")
nested_answer()
</code>""",
)
agent = CodeAgent(tools=[], model=FakeCodeModelFinalAnswer())
output = agent.run("Count to 3")
assert output == "Correct!"
def test_transformers_toolcalling_agent(self):
@tool
def weather_api(location: str, celsius: str = "") -> str:
"""
Gets the weather in the next days at given location.
Secretly this tool does not care about the location, it hates the weather everywhere.
Args:
location: the location
celsius: the temperature type
"""
return "The weather is UNGODLY with torrential rains and temperatures below -10°C"
model = TransformersModel(
model_id="HuggingFaceTB/SmolLM2-360M-Instruct",
max_new_tokens=100,
device_map="auto",
do_sample=False,
)
agent = ToolCallingAgent(model=model, tools=[weather_api], max_steps=1, verbosity_level=10)
task = "What is the weather in Paris? "
agent.run(task)
assert agent.memory.steps[0].task == task
assert agent.memory.steps[1].tool_calls[0].name == "weather_api"
step_memory_dict = agent.memory.get_succinct_steps()[1]
assert step_memory_dict["model_output_message"]["tool_calls"][0]["function"]["name"] == "weather_api"
assert step_memory_dict["model_output_message"]["raw"]["completion_kwargs"]["max_new_tokens"] == 100
assert "model_input_messages" in agent.memory.get_full_steps()[1]
assert step_memory_dict["token_usage"]["total_tokens"] > 100
assert step_memory_dict["timing"]["duration"] > 0.1
def test_final_answer_checks(self):
error_string = "failed with error"
def check_always_fails(final_answer, agent_memory):
assert False, "Error raised in check"
agent = CodeAgent(model=FakeCodeModel(), tools=[], final_answer_checks=[check_always_fails])
agent.run("Dummy task.")
assert error_string in str(agent.write_memory_to_messages())
assert "Error raised in check" in str(agent.write_memory_to_messages())
agent = CodeAgent(
model=FakeCodeModel(),
tools=[],
final_answer_checks=[lambda x, y: x == 7.2904],
verbosity_level=1000,
)
output = agent.run("Dummy task.")
assert output == 7.2904 # Check that output is correct
assert len([step for step in agent.memory.steps if isinstance(step, ActionStep)]) == 2
assert error_string not in str(agent.write_memory_to_messages())
def test_generation_errors_are_raised(self):
class FakeCodeModel(Model):
def generate(self, messages, stop_sequences=None):
assert False, "Generation failed"
agent = CodeAgent(model=FakeCodeModel(), tools=[])
with pytest.raises(AgentGenerationError) as e:
agent.run("Dummy task.")
assert len(agent.memory.steps) == 2
assert "Generation failed" in str(e)
def test_planning_step_with_injected_memory(self):
"""Test that agent properly uses update plan prompts when memory is injected before a run.
This test verifies:
1. Planning steps are created with the correct frequency
2. Injected memory is included in planning context
3. Messages are properly formatted with expected roles and content
"""
planning_interval = 1
max_steps = 4
task = "Continuous task"
previous_task = "Previous user request"
# Create agent with planning capability
agent = CodeAgent(
tools=[],
planning_interval=planning_interval,
model=FakeCodeModelPlanning(),
max_steps=max_steps,
)
# Inject memory before run to simulate existing conversation history
previous_step = TaskStep(task=previous_task)
agent.memory.steps.append(previous_step)
# Run the agent
agent.run(task, reset=False)
# Extract and validate planning steps
planning_steps = [step for step in agent.memory.steps if isinstance(step, PlanningStep)]
assert len(planning_steps) > 2, "Expected multiple planning steps to be generated"
# Verify first planning step incorporates injected memory
first_planning_step = planning_steps[0]
input_messages = first_planning_step.model_input_messages
# Check message structure and content
assert len(input_messages) == 4, (
"First planning step should have 4 messages: system-plan-pre-update + memory + task + user-plan-post-update"
)
# Verify system message contains current task
system_message = input_messages[0]
assert system_message.role == "system", "First message should have system role"
assert task in system_message.content[0]["text"], f"System message should contain the current task: '{task}'"
# Verify memory message contains previous task
memory_message = input_messages[1]
assert previous_task in memory_message.content[0]["text"], (
f"Memory message should contain previous task: '{previous_task}'"
)
# Verify task message contains current task
task_message = input_messages[2]
assert task in task_message.content[0]["text"], f"Task message should contain current task: '{task}'"
# Verify user message for planning
user_message = input_messages[3]
assert user_message.role == "user", "Fourth message should have user role"
# Verify second planning step has more context from first agent actions
second_planning_step = planning_steps[1]
second_messages = second_planning_step.model_input_messages
# Check that conversation history is growing appropriately
assert len(second_messages) == 6, "Second planning step should have 6 messages including tool interactions"
# Verify all conversation elements are present
conversation_text = "".join([msg.content[0]["text"] for msg in second_messages if hasattr(msg, "content")])
assert previous_task in conversation_text, "Previous task should be included in the conversation history"
assert task in conversation_text, "Current task should be included in the conversation history"
assert "tools" in conversation_text, "Tool interactions should be included in the conversation history"
class CustomFinalAnswerTool(FinalAnswerTool):
def forward(self, answer) -> str:
return answer + "CUSTOM"
class MockTool(Tool):
def __init__(self, name):
self.name = name
self.description = "Mock tool description"
self.inputs = {}
self.output_type = "string"
def forward(self):
return "Mock tool output"
class MockAgent:
def __init__(self, name, tools, description="Mock agent description"):
self.name = name
self.tools = {t.name: t for t in tools}
self.description = description
class DummyMultiStepAgent(MultiStepAgent):
def step(self, memory_step: ActionStep) -> Generator[None]:
yield None
def initialize_system_prompt(self):
pass
class TestMultiStepAgent:
def test_instantiation_disables_logging_to_terminal(self):
fake_model = MagicMock()
agent = DummyMultiStepAgent(tools=[], model=fake_model)
assert agent.logger.level == -1, "logging to terminal should be disabled for testing using a fixture"
def test_instantiation_with_prompt_templates(self, prompt_templates):
agent = DummyMultiStepAgent(tools=[], model=MagicMock(), prompt_templates=prompt_templates)
assert agent.prompt_templates == prompt_templates
assert agent.prompt_templates["system_prompt"] == "This is a test system prompt."
assert "managed_agent" in agent.prompt_templates
assert agent.prompt_templates["managed_agent"]["task"] == "Task for {{name}}: {{task}}"
assert agent.prompt_templates["managed_agent"]["report"] == "Report for {{name}}: {{final_answer}}"
@pytest.mark.parametrize(
"tools, expected_final_answer_tool",
[([], FinalAnswerTool), ([CustomFinalAnswerTool()], CustomFinalAnswerTool)],
)
def test_instantiation_with_final_answer_tool(self, tools, expected_final_answer_tool):
agent = DummyMultiStepAgent(tools=tools, model=MagicMock())
assert "final_answer" in agent.tools
assert isinstance(agent.tools["final_answer"], expected_final_answer_tool)
def test_instantiation_with_deprecated_grammar(self):
class SimpleAgent(MultiStepAgent):
def initialize_system_prompt(self) -> str:
return "Test system prompt"
# Test with a non-None grammar parameter
with pytest.warns(
FutureWarning, match="Parameter 'grammar' is deprecated and will be removed in version 1.20."
):
SimpleAgent(tools=[], model=MagicMock(), grammar={"format": "json"}, verbosity_level=LogLevel.DEBUG)
# Verify no warning when grammar is None
with warnings.catch_warnings():
warnings.simplefilter("error") # Turn warnings into errors
SimpleAgent(tools=[], model=MagicMock(), grammar=None, verbosity_level=LogLevel.DEBUG)
def test_system_prompt_property(self):
"""Test that system_prompt property is read-only and calls initialize_system_prompt."""
class SimpleAgent(MultiStepAgent):
def initialize_system_prompt(self) -> str:
return "Test system prompt"
def step(self, memory_step: ActionStep) -> Generator[None]:
yield None
# Create a simple agent with mocked model
model = MagicMock()
agent = SimpleAgent(tools=[], model=model)
# Test reading the property works and calls initialize_system_prompt
assert agent.system_prompt == "Test system prompt"
# Test setting the property raises AttributeError with correct message
with pytest.raises(
AttributeError,
match=re.escape(
"""The 'system_prompt' property is read-only. Use 'self.prompt_templates["system_prompt"]' instead."""
),
):
agent.system_prompt = "New system prompt"
# assert "read-only" in str(exc_info.value)
# assert "Use 'self.prompt_templates[\"system_prompt\"]' instead" in str(exc_info.value)
def test_logs_display_thoughts_even_if_error(self):
class FakeJsonModelNoCall(Model):
def generate(self, messages, stop_sequences=None, tools_to_call_from=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""I don't want to call tools today""",
tool_calls=None,
raw="""I don't want to call tools today""",
)
agent_toolcalling = ToolCallingAgent(model=FakeJsonModelNoCall(), tools=[], max_steps=1, verbosity_level=10)
with agent_toolcalling.logger.console.capture() as capture:
agent_toolcalling.run("Dummy task")
assert "don't" in capture.get() and "want" in capture.get()
class FakeCodeModelNoCall(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""I don't want to write an action today""",
)
agent_code = CodeAgent(model=FakeCodeModelNoCall(), tools=[], max_steps=1, verbosity_level=10)
with agent_code.logger.console.capture() as capture:
agent_code.run("Dummy task")
assert "don't" in capture.get() and "want" in capture.get()
def test_step_number(self):
fake_model = MagicMock()
fake_model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content="Model output.",
tool_calls=None,
raw="Model output.",
token_usage=None,
)
max_steps = 2
agent = CodeAgent(tools=[], model=fake_model, max_steps=max_steps)
assert hasattr(agent, "step_number"), "step_number attribute should be defined"
assert agent.step_number == 0, "step_number should be initialized to 0"
agent.run("Test task")
assert hasattr(agent, "step_number"), "step_number attribute should be defined"
assert agent.step_number == max_steps + 1, "step_number should be max_steps + 1 after run method is called"
@pytest.mark.parametrize(
"step, expected_messages_list",
[
(
1,
[
[
ChatMessage(
role=MessageRole.USER, content=[{"type": "text", "text": "INITIAL_PLAN_USER_PROMPT"}]
),
],
],
),
(
2,
[
[
ChatMessage(
role=MessageRole.SYSTEM,
content=[{"type": "text", "text": "UPDATE_PLAN_SYSTEM_PROMPT"}],
),
ChatMessage(
role=MessageRole.USER,
content=[{"type": "text", "text": "UPDATE_PLAN_USER_PROMPT"}],
),
],
],
),
],
)
def test_planning_step(self, step, expected_messages_list):
fake_model = MagicMock()
agent = CodeAgent(
tools=[],
model=fake_model,
)
task = "Test task"
planning_step = list(agent._generate_planning_step(task, is_first_step=(step == 1), step=step))[-1]
expected_message_texts = {
"INITIAL_PLAN_USER_PROMPT": populate_template(
agent.prompt_templates["planning"]["initial_plan"],
variables=dict(
task=task,
tools=agent.tools,
managed_agents=agent.managed_agents,
answer_facts=planning_step.model_output_message.content,
),
),
"UPDATE_PLAN_SYSTEM_PROMPT": populate_template(
agent.prompt_templates["planning"]["update_plan_pre_messages"], variables=dict(task=task)
),
"UPDATE_PLAN_USER_PROMPT": populate_template(
agent.prompt_templates["planning"]["update_plan_post_messages"],
variables=dict(
task=task,
tools=agent.tools,
managed_agents=agent.managed_agents,
facts_update=planning_step.model_output_message.content,
remaining_steps=agent.max_steps - step,
),
),
}
for expected_messages in expected_messages_list:
for expected_message in expected_messages:
expected_message.content[0]["text"] = expected_message_texts[expected_message.content[0]["text"]]
assert isinstance(planning_step, PlanningStep)
expected_model_input_messages = expected_messages_list[0]
model_input_messages = planning_step.model_input_messages
assert isinstance(model_input_messages, list)
assert len(model_input_messages) == len(expected_model_input_messages) # 2
for message, expected_message in zip(model_input_messages, expected_model_input_messages):
assert isinstance(message, ChatMessage)
assert message.role in MessageRole.__members__.values()
assert message.role == expected_message.role
assert isinstance(message.content, list)
for content, expected_content in zip(message.content, expected_message.content):
assert content == expected_content
# Test calls to model
assert len(fake_model.generate.call_args_list) == 1
for call_args, expected_messages in zip(fake_model.generate.call_args_list, expected_messages_list):
assert len(call_args.args) == 1
messages = call_args.args[0]
assert isinstance(messages, list)
assert len(messages) == len(expected_messages)
for message, expected_message in zip(messages, expected_messages):
assert isinstance(message, ChatMessage)
assert message.role in MessageRole.__members__.values()
assert message.role == expected_message.role
assert isinstance(message.content, list)
for content, expected_content in zip(message.content, expected_message.content):
assert content == expected_content
@pytest.mark.parametrize(
"images, expected_messages_list",
[
(
None,
[
[
ChatMessage(
role=MessageRole.SYSTEM,
content=[{"type": "text", "text": "FINAL_ANSWER_SYSTEM_PROMPT"}],
),
ChatMessage(
role=MessageRole.USER,
content=[{"type": "text", "text": "FINAL_ANSWER_USER_PROMPT"}],
),
]
],
),
(
["image1.png"],
[
[
ChatMessage(
role=MessageRole.SYSTEM,
content=[
{"type": "text", "text": "FINAL_ANSWER_SYSTEM_PROMPT"},
{"type": "image", "image": "image1.png"},
],
),
ChatMessage(
role=MessageRole.USER,
content=[{"type": "text", "text": "FINAL_ANSWER_USER_PROMPT"}],
),
]
],
),
],
)
def test_provide_final_answer(self, images, expected_messages_list):
fake_model = MagicMock()
fake_model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content="Final answer.",
tool_calls=None,
raw="Final answer.",
token_usage=None,
)
agent = CodeAgent(
tools=[],
model=fake_model,
)
task = "Test task"
final_answer = agent.provide_final_answer(task, images=images).content
expected_message_texts = {
"FINAL_ANSWER_SYSTEM_PROMPT": agent.prompt_templates["final_answer"]["pre_messages"],
"FINAL_ANSWER_USER_PROMPT": populate_template(
agent.prompt_templates["final_answer"]["post_messages"], variables=dict(task=task)
),
}
for expected_messages in expected_messages_list:
for expected_message in expected_messages:
for expected_content in expected_message.content:
if "text" in expected_content:
expected_content["text"] = expected_message_texts[expected_content["text"]]
assert final_answer == "Final answer."
# Test calls to model
assert len(fake_model.generate.call_args_list) == 1
for call_args, expected_messages in zip(fake_model.generate.call_args_list, expected_messages_list):
assert len(call_args.args) == 1
messages = call_args.args[0]
assert isinstance(messages, list)
assert len(messages) == len(expected_messages)
for message, expected_message in zip(messages, expected_messages):
assert isinstance(message, ChatMessage)
assert message.role in MessageRole.__members__.values()
assert message.role == expected_message.role
assert isinstance(message.content, list)
for content, expected_content in zip(message.content, expected_message.content):
assert content == expected_content
def test_interrupt(self):
fake_model = MagicMock()
fake_model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content="Model output.",
tool_calls=None,
raw="Model output.",
token_usage=None,
)
def interrupt_callback(memory_step, agent):
agent.interrupt()
agent = CodeAgent(
tools=[],
model=fake_model,
step_callbacks=[interrupt_callback],
)
with pytest.raises(AgentError) as e:
agent.run("Test task")
assert "Agent interrupted" in str(e)
@pytest.mark.parametrize(
"tools, managed_agents, name, expectation",
[
# Valid case: no duplicates
(
[MockTool("tool1"), MockTool("tool2")],
[MockAgent("agent1", [MockTool("tool3")])],
"test_agent",
does_not_raise(),
),
# Invalid case: duplicate tool names
([MockTool("tool1"), MockTool("tool1")], [], "test_agent", pytest.raises(ValueError)),
# Invalid case: tool name same as managed agent name
(
[MockTool("tool1")],
[MockAgent("tool1", [MockTool("final_answer")])],
"test_agent",
pytest.raises(ValueError),
),
# Valid case: tool name same as managed agent's tool name
([MockTool("tool1")], [MockAgent("agent1", [MockTool("tool1")])], "test_agent", does_not_raise()),
# Invalid case: duplicate managed agent name and managed agent tool name
([MockTool("tool1")], [], "tool1", pytest.raises(ValueError)),
# Valid case: duplicate tool names across managed agents
(
[MockTool("tool1")],
[
MockAgent("agent1", [MockTool("tool2"), MockTool("final_answer")]),
MockAgent("agent2", [MockTool("tool2"), MockTool("final_answer")]),
],
"test_agent",
does_not_raise(),
),
],
)
def test_validate_tools_and_managed_agents(self, tools, managed_agents, name, expectation):
fake_model = MagicMock()
with expectation:
DummyMultiStepAgent(
tools=tools,
model=fake_model,
name=name,
managed_agents=managed_agents,
)
def test_from_dict(self):
# Create a test agent dictionary
agent_dict = {
"model": {"class": "TransformersModel", "data": {"model_id": "test/model"}},
"tools": [
{
"name": "valid_tool_function",
"code": 'from smolagents import Tool\nfrom typing import Any, Optional\n\nclass SimpleTool(Tool):\n name = "valid_tool_function"\n description = "A valid tool function."\n inputs = {"input":{"type":"string","description":"Input string."}}\n output_type = "string"\n\n def forward(self, input: str) -> str:\n """A valid tool function.\n\n Args:\n input (str): Input string.\n """\n return input.upper()',
"requirements": {"smolagents"},
}
],
"managed_agents": {},
"prompt_templates": EMPTY_PROMPT_TEMPLATES,
"max_steps": 15,
"verbosity_level": 2,
"planning_interval": 3,
"name": "test_agent",
"description": "Test agent description",
}
# Call from_dict
with patch("smolagents.models.TransformersModel") as mock_model_class:
mock_model_instance = mock_model_class.from_dict.return_value
agent = DummyMultiStepAgent.from_dict(agent_dict)
# Verify the agent was created correctly
assert agent.model == mock_model_instance
assert mock_model_class.from_dict.call_args.args[0] == {"model_id": "test/model"}
assert agent.max_steps == 15
assert agent.logger.level == 2
assert agent.planning_interval == 3
assert agent.name == "test_agent"
assert agent.description == "Test agent description"
# Verify the tool was created correctly
assert sorted(agent.tools.keys()) == ["final_answer", "valid_tool_function"]
assert agent.tools["valid_tool_function"].name == "valid_tool_function"
assert agent.tools["valid_tool_function"].description == "A valid tool function."
assert agent.tools["valid_tool_function"].inputs == {
"input": {"type": "string", "description": "Input string."}
}
assert agent.tools["valid_tool_function"]("test") == "TEST"
# Test overriding with kwargs
with patch("smolagents.models.TransformersModel") as mock_model_class:
agent = DummyMultiStepAgent.from_dict(agent_dict, max_steps=30)
assert agent.max_steps == 30
class TestToolCallingAgent:
def test_toolcalling_agent_instructions(self):
agent = ToolCallingAgent(tools=[], model=MagicMock(), instructions="Test instructions")
assert agent.instructions == "Test instructions"
assert "Test instructions" in agent.system_prompt
def test_toolcalling_agent_passes_both_tools_and_managed_agents(self, test_tool):
"""Test that both tools and managed agents are passed to the model."""
managed_agent = MagicMock()
managed_agent.name = "managed_agent"
model = MagicMock()
model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "test_value"}),
)
],
)
agent = ToolCallingAgent(tools=[test_tool], managed_agents=[managed_agent], model=model)
# Run the agent one step to trigger the model call
next(agent.run("Test task", stream=True))
# Check that the model was called with both tools and managed agents:
# - Get all tool_to_call_from names passed to the model
tools_to_call_from_names = [tool.name for tool in model.generate.call_args.kwargs["tools_to_call_from"]]
# - Verify both regular tools and managed agents are included
assert "test_tool" in tools_to_call_from_names # The regular tool
assert "managed_agent" in tools_to_call_from_names # The managed agent
assert "final_answer" in tools_to_call_from_names # The final_answer tool (added by default)
@patch("huggingface_hub.InferenceClient")
def test_toolcalling_agent_api(self, mock_inference_client):
mock_client = mock_inference_client.return_value
mock_response = mock_client.chat_completion.return_value
mock_response.choices[0].message = ChatCompletionOutputMessage(
role=MessageRole.ASSISTANT,
content='{"name": "weather_api", "arguments": {"location": "Paris", "date": "today"}}',
)
mock_response.usage.prompt_tokens = 10
mock_response.usage.completion_tokens = 20
model = InferenceClientModel(model_id="test-model")
from smolagents import tool
@tool
def weather_api(location: str, date: str) -> str:
"""
Gets the weather in the next days at given location.
Args:
location: the location
date: the date
"""
return f"The weather in {location} on date:{date} is sunny."
agent = ToolCallingAgent(model=model, tools=[weather_api], max_steps=1)
agent.run("What's the weather in Paris?")
assert agent.memory.steps[0].task == "What's the weather in Paris?"
assert agent.memory.steps[1].tool_calls[0].name == "weather_api"
assert agent.memory.steps[1].tool_calls[0].arguments == {"location": "Paris", "date": "today"}
assert agent.memory.steps[1].observations == "The weather in Paris on date:today is sunny."
mock_response.choices[0].message = ChatCompletionOutputMessage(
role=MessageRole.ASSISTANT,
content=None,
tool_calls=[
ChatCompletionOutputToolCall(
function=ChatCompletionOutputFunctionDefinition(
name="weather_api", arguments='{"location": "Paris", "date": "today"}'
),
id="call_0",
type="function",
)
],
)
agent.run("What's the weather in Paris?")
assert agent.memory.steps[0].task == "What's the weather in Paris?"
assert agent.memory.steps[1].tool_calls[0].name == "weather_api"
assert agent.memory.steps[1].tool_calls[0].arguments == {"location": "Paris", "date": "today"}
assert agent.memory.steps[1].observations == "The weather in Paris on date:today is sunny."
@patch("openai.OpenAI")
def test_toolcalling_agent_stream_outputs_multiple_tool_calls(self, mock_openai_client, test_tool):
"""Test that ToolCallingAgent with stream_outputs=True returns the first final_answer when multiple are called."""
mock_client = mock_openai_client.return_value
from smolagents import OpenAIServerModel
# Mock streaming response with multiple final_answer calls
mock_deltas = [
ChoiceDelta(role=MessageRole.ASSISTANT),
ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=0,
id="call_1",
function=ChoiceDeltaToolCallFunction(name="final_answer"),
type="function",
)
]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='{"an'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='swer"'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments=': "out'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments="put1"))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=0, function=ChoiceDeltaToolCallFunction(arguments='"}'))]
),
ChoiceDelta(
tool_calls=[
ChoiceDeltaToolCall(
index=1,
id="call_2",
function=ChoiceDeltaToolCallFunction(name="test_tool"),
type="function",
)
]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='{"in'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='put"'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments=': "out'))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments="put2"))]
),
ChoiceDelta(
tool_calls=[ChoiceDeltaToolCall(index=1, function=ChoiceDeltaToolCallFunction(arguments='"}'))]
),
]
class MockChoice:
def __init__(self, delta):
self.delta = delta
class MockChunk:
def __init__(self, delta):
self.choices = [MockChoice(delta)]
self.usage = None
mock_client.chat.completions.create.return_value = (MockChunk(delta) for delta in mock_deltas)
# Mock usage for non-streaming fallback
mock_usage = MagicMock()
mock_usage.prompt_tokens = 10
mock_usage.completion_tokens = 20
model = OpenAIServerModel(model_id="fakemodel")
agent = ToolCallingAgent(model=model, tools=[test_tool], max_steps=1, stream_outputs=True)
result = agent.run("Make 2 calls to final answer: return both 'output1' and 'output2'")
assert len(agent.memory.steps[-1].model_output_message.tool_calls) == 2
assert agent.memory.steps[-1].model_output_message.tool_calls[0].function.name == "final_answer"
assert agent.memory.steps[-1].model_output_message.tool_calls[1].function.name == "test_tool"
# The agent should return the final answer call
assert result == "output1"
@patch("huggingface_hub.InferenceClient")
def test_toolcalling_agent_api_misformatted_output(self, mock_inference_client):
"""Test that even misformatted json blobs don't interrupt the run for a ToolCallingAgent."""
mock_client = mock_inference_client.return_value
mock_response = mock_client.chat_completion.return_value
mock_response.choices[0].message = ChatCompletionOutputMessage(
role=MessageRole.ASSISTANT,
content='{"name": weather_api", "arguments": {"location": "Paris", "date": "today"}}',
)
mock_response.usage.prompt_tokens = 10
mock_response.usage.completion_tokens = 20
model = InferenceClientModel(model_id="test-model")
logger = AgentLogger(console=Console(markup=False, no_color=True))
agent = ToolCallingAgent(model=model, tools=[], max_steps=2, verbosity_level=1, logger=logger)
with agent.logger.console.capture() as capture:
agent.run("What's the weather in Paris?")
assert agent.memory.steps[0].task == "What's the weather in Paris?"
assert agent.memory.steps[1].tool_calls is None
assert "The JSON blob you used is invalid" in agent.memory.steps[1].error.message
assert "Error while parsing" in capture.get()
assert len(agent.memory.steps) == 4
def test_change_tools_after_init(self):
from smolagents import tool
@tool
def fake_tool_1() -> str:
"""Fake tool"""
return "1"
@tool
def fake_tool_2() -> str:
"""Fake tool"""
return "2"
class FakeCodeModel(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(role=MessageRole.ASSISTANT, content="<code>\nfinal_answer(fake_tool_1())\n</code>")
agent = CodeAgent(tools=[fake_tool_1], model=FakeCodeModel())
agent.tools["final_answer"] = CustomFinalAnswerTool()
agent.tools["fake_tool_1"] = fake_tool_2
answer = agent.run("Fake task.")
assert answer == "2CUSTOM"
def test_custom_final_answer_with_custom_inputs(self, test_tool):
class CustomFinalAnswerToolWithCustomInputs(FinalAnswerTool):
inputs = {
"answer1": {"type": "string", "description": "First part of the answer."},
"answer2": {"type": "string", "description": "Second part of the answer."},
}
def forward(self, answer1: str, answer2: str) -> str:
return answer1 + " and " + answer2
model = MagicMock()
model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content=None,
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="final_answer", arguments={"answer1": "1", "answer2": "2"}
),
),
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "3"}),
),
],
)
agent = ToolCallingAgent(tools=[test_tool, CustomFinalAnswerToolWithCustomInputs()], model=model)
answer = agent.run("Fake task.")
assert answer == "1 and 2"
assert agent.memory.steps[-1].model_output_message.tool_calls[0].function.name == "final_answer"
assert agent.memory.steps[-1].model_output_message.tool_calls[1].function.name == "test_tool"
@pytest.mark.parametrize(
"test_case",
[
# Case 0: Single valid tool call
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "test_value"}),
)
],
"expected_model_output": "Tool call call_1: calling 'test_tool' with arguments: {'input': 'test_value'}",
"expected_observations": "Processed: test_value",
"expected_final_outputs": ["Processed: test_value"],
"expected_error": None,
},
# Case 1: Multiple tool calls
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "value1"}),
),
ChatMessageToolCall(
id="call_2",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "value2"}),
),
],
"expected_model_output": "Tool call call_1: calling 'test_tool' with arguments: {'input': 'value1'}\nTool call call_2: calling 'test_tool' with arguments: {'input': 'value2'}",
"expected_observations": "Processed: value1\nProcessed: value2",
"expected_final_outputs": ["Processed: value1", "Processed: value2"],
"expected_error": None,
},
# Case 2: Invalid tool name
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="nonexistent_tool", arguments={"input": "test"}),
)
],
"expected_error": AgentToolExecutionError,
},
# Case 3: Tool execution error
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"input": "error"}),
)
],
"expected_error": AgentToolExecutionError,
},
# Case 4: Empty tool calls list
{
"tool_calls": [],
"expected_model_output": "",
"expected_observations": "",
"expected_final_outputs": [],
"expected_error": None,
},
# Case 5: Final answer call
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(
name="final_answer", arguments={"answer": "This is the final answer"}
),
)
],
"expected_model_output": "Tool call call_1: calling 'final_answer' with arguments: {'answer': 'This is the final answer'}",
"expected_observations": "This is the final answer",
"expected_final_outputs": ["This is the final answer"],
"expected_error": None,
},
# Case 6: Invalid arguments
{
"tool_calls": [
ChatMessageToolCall(
id="call_1",
type="function",
function=ChatMessageToolCallFunction(name="test_tool", arguments={"wrong_param": "value"}),
)
],
"expected_error": AgentToolCallError,
},
],
)
def test_process_tool_calls(self, test_case, test_tool):
# Create a ToolCallingAgent instance with the test tool
agent = ToolCallingAgent(tools=[test_tool], model=MagicMock())
# Create chat message with the specified tool calls for process_tool_calls
chat_message = ChatMessage(role=MessageRole.ASSISTANT, content="", tool_calls=test_case["tool_calls"])
# Create a memory step for process_tool_calls
memory_step = ActionStep(step_number=10, timing="mock_timing")
# Process tool calls
if test_case["expected_error"]:
with pytest.raises(test_case["expected_error"]):
list(agent.process_tool_calls(chat_message, memory_step))
else:
final_outputs = list(agent.process_tool_calls(chat_message, memory_step))
assert memory_step.model_output == test_case["expected_model_output"]
assert memory_step.observations == test_case["expected_observations"]
assert [
final_output.output for final_output in final_outputs if isinstance(final_output, ToolOutput)
] == test_case["expected_final_outputs"]
# Verify memory step tool calls were updated correctly
if test_case["tool_calls"]:
assert memory_step.tool_calls == [
ToolCall(name=tool_call.function.name, arguments=tool_call.function.arguments, id=tool_call.id)
for tool_call in test_case["tool_calls"]
]
class TestCodeAgent:
def test_code_agent_instructions(self):
agent = CodeAgent(tools=[], model=MagicMock(), instructions="Test instructions")
assert agent.instructions == "Test instructions"
assert "Test instructions" in agent.system_prompt
agent = CodeAgent(
tools=[], model=MagicMock(), instructions="Test instructions", use_structured_outputs_internally=True
)
assert agent.instructions == "Test instructions"
assert "Test instructions" in agent.system_prompt
@pytest.mark.filterwarnings("ignore") # Ignore FutureWarning for deprecated grammar parameter
def test_init_with_incompatible_grammar_and_use_structured_outputs_internally(self):
# Test that using both parameters raises ValueError with correct message
with pytest.raises(
ValueError, match="You cannot use 'grammar' and 'use_structured_outputs_internally' at the same time."
):
CodeAgent(
tools=[],
model=MagicMock(),
grammar={"format": "json"},
use_structured_outputs_internally=True,
verbosity_level=LogLevel.DEBUG,
)
# Verify no error when only one option is used
# Only grammar
agent_with_grammar = CodeAgent(
tools=[],
model=MagicMock(),
grammar={"format": "json"},
use_structured_outputs_internally=False,
verbosity_level=LogLevel.DEBUG,
)
assert agent_with_grammar.grammar is not None
assert agent_with_grammar._use_structured_outputs_internally is False
# Only structured output
agent_with_structured = CodeAgent(
tools=[],
model=MagicMock(),
grammar=None,
use_structured_outputs_internally=True,
verbosity_level=LogLevel.DEBUG,
)
assert agent_with_structured.grammar is None
assert agent_with_structured._use_structured_outputs_internally is True
@pytest.mark.parametrize("provide_run_summary", [False, True])
def test_call_with_provide_run_summary(self, provide_run_summary):
agent = CodeAgent(tools=[], model=MagicMock(), provide_run_summary=provide_run_summary)
assert agent.provide_run_summary is provide_run_summary
agent.name = "test_agent"
agent.run = MagicMock(return_value="Test output")
agent.write_memory_to_messages = MagicMock(return_value=[{"content": "Test summary"}])
result = agent("Test request")
expected_summary = "Here is the final answer from your managed agent 'test_agent':\nTest output"
if provide_run_summary:
expected_summary += (
"\n\nFor more detail, find below a summary of this agent's work:\n"
"<summary_of_work>\n\nTest summary\n---\n</summary_of_work>"
)
assert result == expected_summary
def test_errors_logging(self):
class FakeCodeModel(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(role=MessageRole.ASSISTANT, content="<code>\nsecret=3;['1', '2'][secret]\n</code>")
agent = CodeAgent(tools=[], model=FakeCodeModel(), verbosity_level=1)
with agent.logger.console.capture() as capture:
agent.run("Test request")
assert "secret\\\\" in repr(capture.get())
def test_missing_import_triggers_advice_in_error_log(self):
# Set explicit verbosity level to 1 to override the default verbosity level of -1 set in CI fixture
agent = CodeAgent(tools=[], model=FakeCodeModelImport(), verbosity_level=1)
with agent.logger.console.capture() as capture:
agent.run("Count to 3")
str_output = capture.get()
assert "`additional_authorized_imports`" in str_output.replace("\n", "")
def test_errors_show_offending_line_and_error(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModelError())
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, AgentText)
assert output == "got an error"
assert "Code execution failed at line 'error_function()'" in str(agent.memory.steps[1].error)
assert "ValueError" in str(agent.memory.steps)
def test_error_saves_previous_print_outputs(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModelError(), verbosity_level=10)
agent.run("What is 2 multiplied by 3.6452?")
assert "Flag!" in str(agent.memory.steps[1].observations)
def test_syntax_error_show_offending_lines(self):
agent = CodeAgent(tools=[PythonInterpreterTool()], model=FakeCodeModelSyntaxError())
output = agent.run("What is 2 multiplied by 3.6452?")
assert isinstance(output, AgentText)
assert output == "got an error"
assert ' print("Failing due to unexpected indent")' in str(agent.memory.steps)
assert isinstance(agent.memory.steps[-2], ActionStep)
assert agent.memory.steps[-2].code_action == dedent("""a = 2
b = a * 2
print("Failing due to unexpected indent")
print("Ok, calculation done!")""")
def test_end_code_appending(self):
# Checking original output message
orig_output = FakeCodeModelNoReturn().generate([])
assert not orig_output.content.endswith("<end_code>")
# Checking the step output
agent = CodeAgent(
tools=[PythonInterpreterTool()],
model=FakeCodeModelNoReturn(),
max_steps=1,
)
answer = agent.run("What is 2 multiplied by 3.6452?")
assert answer
memory_steps = agent.memory.steps
actions_steps = [s for s in memory_steps if isinstance(s, ActionStep)]
outputs = [s.model_output for s in actions_steps if s.model_output]
assert outputs
assert all(o.endswith("<end_code>") for o in outputs)
messages = [s.model_output_message for s in actions_steps if s.model_output_message]
assert messages
assert all(m.content.endswith("<end_code>") for m in messages)
def test_change_tools_after_init(self):
from smolagents import tool
@tool
def fake_tool_1() -> str:
"""Fake tool"""
return "1"
@tool
def fake_tool_2() -> str:
"""Fake tool"""
return "2"
class FakeCodeModel(Model):
def generate(self, messages, stop_sequences=None):
return ChatMessage(role=MessageRole.ASSISTANT, content="<code>\nfinal_answer(fake_tool_1())\n</code>")
agent = CodeAgent(tools=[fake_tool_1], model=FakeCodeModel())
agent.tools["final_answer"] = CustomFinalAnswerTool()
agent.tools["fake_tool_1"] = fake_tool_2
answer = agent.run("Fake task.")
assert answer == "2CUSTOM"
def test_local_python_executor_with_custom_functions(self):
model = MagicMock()
model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=None,
raw="",
token_usage=None,
)
agent = CodeAgent(tools=[], model=model, executor_kwargs={"additional_functions": {"open": open}})
agent.run("Test run")
assert "open" in agent.python_executor.static_tools
@pytest.mark.parametrize("agent_dict_version", ["v1.9", "v1.10"])
def test_from_folder(self, agent_dict_version, get_agent_dict):
agent_dict = get_agent_dict(agent_dict_version)
with (
patch("smolagents.agents.Path") as mock_path,
patch("smolagents.models.InferenceClientModel") as mock_model,
):
import json
mock_path.return_value.__truediv__.return_value.read_text.return_value = json.dumps(agent_dict)
mock_model.from_dict.return_value.model_id = "Qwen/Qwen2.5-Coder-32B-Instruct"
agent = CodeAgent.from_folder("ignored_dummy_folder")
assert isinstance(agent, CodeAgent)
assert agent.name == "test_agent"
assert agent.description == "dummy description"
assert agent.max_steps == 10
assert agent.planning_interval == 2
assert agent.additional_authorized_imports == ["pandas"]
assert "pandas" in agent.authorized_imports
assert agent.executor_type == "local"
assert agent.executor_kwargs == {}
assert agent.max_print_outputs_length is None
assert agent.managed_agents == {}
assert set(agent.tools.keys()) == {"final_answer"}
assert agent.model == mock_model.from_dict.return_value
assert mock_model.from_dict.call_args.args[0]["model_id"] == "Qwen/Qwen2.5-Coder-32B-Instruct"
assert agent.model.model_id == "Qwen/Qwen2.5-Coder-32B-Instruct"
assert agent.logger.level == 2
assert agent.prompt_templates["system_prompt"] == "dummy system prompt"
def test_from_dict(self):
# Create a test agent dictionary
agent_dict = {
"model": {"class": "InferenceClientModel", "data": {"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct"}},
"tools": [
{
"name": "valid_tool_function",
"code": 'from smolagents import Tool\nfrom typing import Any, Optional\n\nclass SimpleTool(Tool):\n name = "valid_tool_function"\n description = "A valid tool function."\n inputs = {"input":{"type":"string","description":"Input string."}}\n output_type = "string"\n\n def forward(self, input: str) -> str:\n """A valid tool function.\n\n Args:\n input (str): Input string.\n """\n return input.upper()',
"requirements": {"smolagents"},
}
],
"managed_agents": {},
"prompt_templates": EMPTY_PROMPT_TEMPLATES,
"max_steps": 15,
"verbosity_level": 2,
"use_structured_output": False,
"planning_interval": 3,
"name": "test_code_agent",
"description": "Test code agent description",
"authorized_imports": ["pandas", "numpy"],
"executor_type": "local",
"executor_kwargs": {"max_print_outputs_length": 10_000},
"max_print_outputs_length": 1000,
}
# Call from_dict
with patch("smolagents.models.InferenceClientModel") as mock_model_class:
mock_model_instance = mock_model_class.from_dict.return_value
agent = CodeAgent.from_dict(agent_dict)
# Verify the agent was created correctly with CodeAgent-specific parameters
assert agent.model == mock_model_instance
assert agent.additional_authorized_imports == ["pandas", "numpy"]
assert agent.executor_type == "local"
assert agent.executor_kwargs == {"max_print_outputs_length": 10_000}
assert agent.max_print_outputs_length == 1000
# Test with missing optional parameters
minimal_agent_dict = {
"model": {"class": "InferenceClientModel", "data": {"model_id": "Qwen/Qwen2.5-Coder-32B-Instruct"}},
"tools": [],
"managed_agents": {},
}
with patch("smolagents.models.InferenceClientModel"):
agent = CodeAgent.from_dict(minimal_agent_dict)
# Verify defaults are used
assert agent.max_steps == 20 # default from MultiStepAgent.__init__
# Test overriding with kwargs
with patch("smolagents.models.InferenceClientModel"):
agent = CodeAgent.from_dict(
agent_dict,
additional_authorized_imports=["matplotlib"],
executor_kwargs={"max_print_outputs_length": 5_000},
)
assert agent.additional_authorized_imports == ["matplotlib"]
assert agent.executor_kwargs == {"max_print_outputs_length": 5_000}
def test_custom_final_answer_with_custom_inputs(self):
class CustomFinalAnswerToolWithCustomInputs(FinalAnswerTool):
inputs = {
"answer1": {"type": "string", "description": "First part of the answer."},
"answer2": {"type": "string", "description": "Second part of the answer."},
}
def forward(self, answer1: str, answer2: str) -> str:
return answer1 + "CUSTOM" + answer2
model = MagicMock()
model.generate.return_value = ChatMessage(
role=MessageRole.ASSISTANT, content="<code>\nfinal_answer(answer1='1', answer2='2')\n</code>"
)
agent = CodeAgent(tools=[CustomFinalAnswerToolWithCustomInputs()], model=model)
answer = agent.run("Fake task.")
assert answer == "1CUSTOM2"
class TestMultiAgents:
def test_multiagents_save(self, tmp_path):
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=2096, temperature=0.5)
web_agent = ToolCallingAgent(
model=model,
tools=[DuckDuckGoSearchTool(max_results=2), VisitWebpageTool()],
name="web_agent",
description="does web searches",
)
code_agent = CodeAgent(model=model, tools=[], name="useless", description="does nothing in particular")
agent = CodeAgent(
model=model,
tools=[],
additional_authorized_imports=["pandas", "datetime"],
managed_agents=[web_agent, code_agent],
max_print_outputs_length=1000,
executor_type="local",
executor_kwargs={"max_print_outputs_length": 10_000},
)
agent.save(tmp_path)
expected_structure = {
"managed_agents": {
"useless": {"tools": {"files": ["final_answer.py"]}, "files": ["agent.json", "prompts.yaml"]},
"web_agent": {
"tools": {"files": ["final_answer.py", "visit_webpage.py", "web_search.py"]},
"files": ["agent.json", "prompts.yaml"],
},
},
"tools": {"files": ["final_answer.py"]},
"files": ["app.py", "requirements.txt", "agent.json", "prompts.yaml"],
}
def verify_structure(current_path: Path, structure: dict):
for dir_name, contents in structure.items():
if dir_name != "files":
# For directories, verify they exist and recurse into them
dir_path = current_path / dir_name
assert dir_path.exists(), f"Directory {dir_path} does not exist"
assert dir_path.is_dir(), f"{dir_path} is not a directory"
verify_structure(dir_path, contents)
else:
# For files, verify each exists in the current path
for file_name in contents:
file_path = current_path / file_name
assert file_path.exists(), f"File {file_path} does not exist"
assert file_path.is_file(), f"{file_path} is not a file"
verify_structure(tmp_path, expected_structure)
# Test that re-loaded agents work as expected.
agent2 = CodeAgent.from_folder(tmp_path, planning_interval=5)
assert agent2.planning_interval == 5 # Check that kwargs are used
assert set(agent2.authorized_imports) == set(["pandas", "datetime"] + BASE_BUILTIN_MODULES)
assert agent2.max_print_outputs_length == 1000
assert agent2.executor_type == "local"
assert agent2.executor_kwargs == {"max_print_outputs_length": 10_000}
assert (
agent2.managed_agents["web_agent"].tools["web_search"].max_results == 10
) # For now tool init parameters are forgotten
assert agent2.model.kwargs["temperature"] == pytest.approx(0.5)
def test_multiagents(self):
class FakeModelMultiagentsManagerAgent(Model):
model_id = "fake_model"
def generate(
self,
messages,
stop_sequences=None,
tools_to_call_from=None,
):
if tools_to_call_from is not None:
if len(messages) < 3:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="search_agent",
arguments="Who is the current US president?",
),
)
],
)
else:
assert "Report on the current US president" in str(messages)
return ChatMessage(
role=MessageRole.ASSISTANT,
content="",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="final_answer", arguments="Final report."
),
)
],
)
else:
if len(messages) < 3:
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: Let's call our search agent.
<code>
result = search_agent("Who is the current US president?")
</code>
""",
)
else:
assert "Report on the current US president" in str(messages)
return ChatMessage(
role=MessageRole.ASSISTANT,
content="""
Thought: Let's return the report.
<code>
final_answer("Final report.")
</code>
""",
)
manager_model = FakeModelMultiagentsManagerAgent()
class FakeModelMultiagentsManagedAgent(Model):
model_id = "fake_model"
def generate(
self,
messages,
tools_to_call_from=None,
stop_sequences=None,
):
return ChatMessage(
role=MessageRole.ASSISTANT,
content="Here is the secret content: FLAG1",
tool_calls=[
ChatMessageToolCall(
id="call_0",
type="function",
function=ChatMessageToolCallFunction(
name="final_answer",
arguments="Report on the current US president",
),
)
],
)
managed_model = FakeModelMultiagentsManagedAgent()
web_agent = ToolCallingAgent(
tools=[],
model=managed_model,
max_steps=10,
name="search_agent",
description="Runs web searches for you. Give it your request as an argument. Make the request as detailed as needed, you can ask for thorough reports",
verbosity_level=2,
)
manager_code_agent = CodeAgent(
tools=[],
model=manager_model,
managed_agents=[web_agent],
additional_authorized_imports=["time", "numpy", "pandas"],
)
report = manager_code_agent.run("Fake question.")
assert report == "Final report."
manager_toolcalling_agent = ToolCallingAgent(
tools=[],
model=manager_model,
managed_agents=[web_agent],
)
with web_agent.logger.console.capture() as capture:
report = manager_toolcalling_agent.run("Fake question.")
assert report == "Final report."
assert "FLAG1" in capture.get() # Check that managed agent's output is properly logged
# Test that visualization works
with manager_toolcalling_agent.logger.console.capture() as capture:
manager_toolcalling_agent.visualize()
assert "├──" in capture.get()
@pytest.fixture
def prompt_templates():
return {
"system_prompt": "This is a test system prompt.",
"managed_agent": {"task": "Task for {{name}}: {{task}}", "report": "Report for {{name}}: {{final_answer}}"},
"planning": {
"initial_plan": "The plan.",
"update_plan_pre_messages": "custom",
"update_plan_post_messages": "custom",
},
"final_answer": {"pre_messages": "custom", "post_messages": "custom"},
}
@pytest.mark.parametrize(
"arguments",
[
{},
{"arg": "bar"},
{None: None},
[1, 2, 3],
],
)
def test_tool_calling_agents_raises_tool_call_error_being_invoked_with_wrong_arguments(arguments):
@tool
def _sample_tool(prompt: str) -> str:
"""Tool that returns same string
Args:
prompt: The string to return
Returns:
The same string
"""
return prompt
agent = ToolCallingAgent(model=FakeToolCallModel(), tools=[_sample_tool])
with pytest.raises(AgentToolCallError):
agent.execute_tool_call(_sample_tool.name, arguments)
def test_tool_calling_agents_raises_agent_execution_error_when_tool_raises():
@tool
def _sample_tool(_: str) -> float:
"""Tool that fails
Args:
_: The pointless string
Returns:
Some number
"""
return 1 / 0
agent = ToolCallingAgent(model=FakeToolCallModel(), tools=[_sample_tool])
with pytest.raises(AgentExecutionError):
agent.execute_tool_call(_sample_tool.name, "sample")
|