File size: 33,156 Bytes
9c31777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import unittest
from contextlib import ExitStack
from unittest.mock import MagicMock, patch

import pytest
from huggingface_hub import ChatCompletionOutputMessage

from smolagents.default_tools import FinalAnswerTool
from smolagents.models import (
    AmazonBedrockServerModel,
    AzureOpenAIServerModel,
    ChatMessage,
    ChatMessageToolCall,
    InferenceClientModel,
    LiteLLMModel,
    LiteLLMRouterModel,
    MessageRole,
    MLXModel,
    Model,
    OpenAIServerModel,
    TransformersModel,
    get_clean_message_list,
    get_tool_call_from_text,
    get_tool_json_schema,
    parse_json_if_needed,
    supports_stop_parameter,
)
from smolagents.tools import tool

from .utils.markers import require_run_all


class TestModel:
    def test_agglomerate_stream_deltas(self):
        from smolagents.models import (
            ChatMessageStreamDelta,
            ChatMessageToolCallFunction,
            ChatMessageToolCallStreamDelta,
            TokenUsage,
            agglomerate_stream_deltas,
        )

        stream_deltas = [
            ChatMessageStreamDelta(
                content="Hi",
                tool_calls=[
                    ChatMessageToolCallStreamDelta(
                        index=0,
                        type="function",
                        function=ChatMessageToolCallFunction(arguments="", name="web_search", description=None),
                    )
                ],
                token_usage=None,
            ),
            ChatMessageStreamDelta(
                content=" everyone",
                tool_calls=[
                    ChatMessageToolCallStreamDelta(
                        index=0,
                        type="function",
                        function=ChatMessageToolCallFunction(arguments=' {"', name="web_search", description=None),
                    )
                ],
                token_usage=None,
            ),
            ChatMessageStreamDelta(
                content=", it's",
                tool_calls=[
                    ChatMessageToolCallStreamDelta(
                        index=0,
                        type="function",
                        function=ChatMessageToolCallFunction(
                            arguments='query": "current pope name and date of birth"}',
                            name="web_search",
                            description=None,
                        ),
                    )
                ],
                token_usage=None,
            ),
            ChatMessageStreamDelta(
                content="",
                tool_calls=None,
                token_usage=TokenUsage(input_tokens=1348, output_tokens=24),
            ),
        ]
        agglomerated_stream_delta = agglomerate_stream_deltas(stream_deltas)
        assert agglomerated_stream_delta.content == "Hi everyone, it's"
        assert (
            agglomerated_stream_delta.tool_calls[0].function.arguments
            == ' {"query": "current pope name and date of birth"}'
        )
        assert agglomerated_stream_delta.token_usage.total_tokens == 1372

    @pytest.mark.parametrize(
        "model_id, stop_sequences, should_contain_stop",
        [
            ("regular-model", ["stop1", "stop2"], True),  # Regular model should include stop
            ("openai/o3", ["stop1", "stop2"], False),  # o3 model should not include stop
            ("openai/o4-mini", ["stop1", "stop2"], False),  # o4-mini model should not include stop
            ("something/else/o3", ["stop1", "stop2"], False),  # Path ending with o3 should not include stop
            ("something/else/o4-mini", ["stop1", "stop2"], False),  # Path ending with o4-mini should not include stop
            ("o3", ["stop1", "stop2"], False),  # Exact o3 model should not include stop
            ("o4-mini", ["stop1", "stop2"], False),  # Exact o4-mini model should not include stop
            ("regular-model", None, False),  # None stop_sequences should not add stop parameter
        ],
    )
    def test_prepare_completion_kwargs_stop_sequences(self, model_id, stop_sequences, should_contain_stop):
        model = Model()
        model.model_id = model_id
        completion_kwargs = model._prepare_completion_kwargs(
            messages=[
                ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}]),
            ],
            stop_sequences=stop_sequences,
        )
        # Verify that the stop parameter is only included when appropriate
        if should_contain_stop:
            assert "stop" in completion_kwargs
            assert completion_kwargs["stop"] == stop_sequences
        else:
            assert "stop" not in completion_kwargs

    @pytest.mark.parametrize(
        "with_tools, tool_choice, expected_result",
        [
            # Default behavior: With tools but no explicit tool_choice, should default to "required"
            (True, ..., {"has_tool_choice": True, "value": "required"}),
            # Custom value: With tools and explicit tool_choice="auto"
            (True, "auto", {"has_tool_choice": True, "value": "auto"}),
            # Tool name as string
            (True, "valid_tool_function", {"has_tool_choice": True, "value": "valid_tool_function"}),
            # Tool choice as dictionary
            (
                True,
                {"type": "function", "function": {"name": "valid_tool_function"}},
                {"has_tool_choice": True, "value": {"type": "function", "function": {"name": "valid_tool_function"}}},
            ),
            # With tools but explicit None tool_choice: should exclude tool_choice
            (True, None, {"has_tool_choice": False, "value": None}),
            # Without tools: tool_choice should never be included
            (False, "required", {"has_tool_choice": False, "value": None}),
            (False, "auto", {"has_tool_choice": False, "value": None}),
            (False, None, {"has_tool_choice": False, "value": None}),
            (False, ..., {"has_tool_choice": False, "value": None}),
        ],
    )
    def test_prepare_completion_kwargs_tool_choice(self, with_tools, tool_choice, expected_result, example_tool):
        model = Model()
        kwargs = {"messages": [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}])]}
        if with_tools:
            kwargs["tools_to_call_from"] = [example_tool]
        if tool_choice is not ...:
            kwargs["tool_choice"] = tool_choice

        completion_kwargs = model._prepare_completion_kwargs(**kwargs)

        if expected_result["has_tool_choice"]:
            assert "tool_choice" in completion_kwargs
            assert completion_kwargs["tool_choice"] == expected_result["value"]
        else:
            assert "tool_choice" not in completion_kwargs

    def test_get_json_schema_has_nullable_args(self):
        @tool
        def get_weather(location: str, celsius: bool | None = False) -> str:
            """
            Get weather in the next days at given location.
            Secretly this tool does not care about the location, it hates the weather everywhere.

            Args:
                location: the location
                celsius: the temperature type
            """
            return "The weather is UNGODLY with torrential rains and temperatures below -10°C"

        assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"]

    def test_chatmessage_has_model_dumps_json(self):
        message = ChatMessage("user", [{"type": "text", "text": "Hello!"}])
        data = json.loads(message.model_dump_json())
        assert data["content"] == [{"type": "text", "text": "Hello!"}]

    @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
    def test_get_mlx_message_no_tool(self):
        model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        output = model(messages, stop_sequences=["great"]).content
        assert output.startswith("Hello")

    @unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
    def test_get_mlx_message_tricky_stop_sequence(self):
        # In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'"
        # which is required to test capturing stop_sequences that have extra chars at the end.
        model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100)
        stop_sequence = " print '>"
        messages = [
            ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": f"Please{stop_sequence}'"}]),
        ]
        # check our assumption that that ">" is followed by "'"
        assert model.tokenizer.vocab[">'"]
        assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'"
        # check stop_sequence capture when output has trailing chars
        assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you"

    def test_transformers_message_no_tool(self, monkeypatch):
        monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30)  # instead of 10
        model = TransformersModel(
            model_id="HuggingFaceTB/SmolLM2-135M-Instruct",
            max_new_tokens=5,
            device_map="cpu",
            do_sample=False,
        )
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        output = model.generate(messages).content
        assert output == "Hello! I'm here"

        output = model.generate_stream(messages, stop_sequences=["great"])
        output_str = ""
        for el in output:
            output_str += el.content
        assert output_str == "Hello! I'm here"

    def test_transformers_message_vl_no_tool(self, shared_datadir, monkeypatch):
        monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30)  # instead of 10
        import PIL.Image

        img = PIL.Image.open(shared_datadir / "000000039769.png")
        model = TransformersModel(
            model_id="llava-hf/llava-interleave-qwen-0.5b-hf",
            max_new_tokens=4,
            device_map="cpu",
            do_sample=False,
        )
        messages = [
            ChatMessage(
                role=MessageRole.USER,
                content=[{"type": "text", "text": "What is this?"}, {"type": "image", "image": img}],
            )
        ]
        output = model.generate(messages).content
        assert output == "This is a very"

        output = model.generate_stream(messages, stop_sequences=["great"])
        output_str = ""
        for el in output:
            output_str += el.content
        assert output_str == "This is a very"

    def test_parse_json_if_needed(self):
        args = "abc"
        parsed_args = parse_json_if_needed(args)
        assert parsed_args == "abc"

        args = '{"a": 3}'
        parsed_args = parse_json_if_needed(args)
        assert parsed_args == {"a": 3}

        args = "3"
        parsed_args = parse_json_if_needed(args)
        assert parsed_args == 3

        args = 3
        parsed_args = parse_json_if_needed(args)
        assert parsed_args == 3


class TestInferenceClientModel:
    def test_call_with_custom_role_conversions(self):
        custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM}
        model = InferenceClientModel(model_id="test-model", custom_role_conversions=custom_role_conversions)
        model.client = MagicMock()
        mock_response = model.client.chat_completion.return_value
        mock_response.choices[0].message = ChatCompletionOutputMessage(role=MessageRole.ASSISTANT)
        messages = [ChatMessage(role=MessageRole.USER, content="Test message")]
        _ = model(messages)
        # Verify that the role conversion was applied
        assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", (
            "role conversion should be applied"
        )

    def test_init_model_with_tokens(self):
        model = InferenceClientModel(model_id="test-model", token="abc")
        assert model.client.token == "abc"

        model = InferenceClientModel(model_id="test-model", api_key="abc")
        assert model.client.token == "abc"

        with pytest.raises(ValueError, match="Received both `token` and `api_key` arguments."):
            InferenceClientModel(model_id="test-model", token="abc", api_key="def")

    def test_structured_outputs_with_unsupported_provider(self):
        with pytest.raises(
            ValueError, match="InferenceClientModel only supports structured outputs with these providers:"
        ):
            model = InferenceClientModel(model_id="test-model", token="abc", provider="some_provider")
            model.generate(
                messages=[ChatMessage(role=MessageRole.USER, content="Hello!")],
                response_format={"type": "json_object"},
            )

    @require_run_all
    def test_get_hfapi_message_no_tool(self):
        model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        model(messages, stop_sequences=["great"])

    @require_run_all
    def test_get_hfapi_message_no_tool_external_provider(self):
        model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        model(messages, stop_sequences=["great"])

    @require_run_all
    def test_get_hfapi_message_stream_no_tool(self):
        model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        for el in model.generate_stream(messages, stop_sequences=["great"]):
            assert el.content is not None

    @require_run_all
    def test_get_hfapi_message_stream_no_tool_external_provider(self):
        model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
        for el in model.generate_stream(messages, stop_sequences=["great"]):
            assert el.content is not None


class TestLiteLLMModel:
    @pytest.mark.parametrize(
        "model_id, error_flag",
        [
            ("groq/llama-3.3-70b", "Invalid API Key"),
            ("cerebras/llama-3.3-70b", "The api_key client option must be set"),
            ("mistral/mistral-tiny", "The api_key client option must be set"),
        ],
    )
    def test_call_different_providers_without_key(self, model_id, error_flag):
        model = LiteLLMModel(model_id=model_id)
        messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Test message"}])]
        with pytest.raises(Exception) as e:
            # This should raise 401 error because of missing API key, not fail for any "bad format" reason
            model.generate(messages)
        assert error_flag in str(e)
        with pytest.raises(Exception) as e:
            # This should raise 401 error because of missing API key, not fail for any "bad format" reason
            for el in model.generate_stream(messages):
                assert el.content is not None
        assert error_flag in str(e)

    def test_passing_flatten_messages(self):
        model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False)
        assert not model.flatten_messages_as_text

        model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True)
        assert model.flatten_messages_as_text


class TestLiteLLMRouterModel:
    @pytest.mark.parametrize(
        "model_id, expected",
        [
            ("llama-3.3-70b", False),
            ("llama-3.3-70b", True),
            ("mistral-tiny", True),
        ],
    )
    def test_flatten_messages_as_text(self, model_id, expected):
        model_list = [
            {"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}},
            {"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}},
            {"model_name": "mistral-tiny", "litellm_params": {"model": "mistral/mistral-tiny"}},
        ]
        model = LiteLLMRouterModel(model_id=model_id, model_list=model_list, flatten_messages_as_text=expected)
        assert model.flatten_messages_as_text is expected

    def test_create_client(self):
        model_list = [
            {"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}},
            {"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}},
        ]
        with patch("litellm.router.Router") as mock_router:
            router_model = LiteLLMRouterModel(
                model_id="model-group-1", model_list=model_list, client_kwargs={"routing_strategy": "simple-shuffle"}
            )
            # Ensure that the Router constructor was called with the expected keyword arguments
            mock_router.assert_called_once()
            assert mock_router.call_count == 1
            assert mock_router.call_args.kwargs["model_list"] == model_list
            assert mock_router.call_args.kwargs["routing_strategy"] == "simple-shuffle"
            assert router_model.client == mock_router.return_value


class TestOpenAIServerModel:
    def test_client_kwargs_passed_correctly(self):
        model_id = "gpt-3.5-turbo"
        api_base = "https://api.openai.com/v1"
        api_key = "test_api_key"
        organization = "test_org"
        project = "test_project"
        client_kwargs = {"max_retries": 5}

        with patch("openai.OpenAI") as MockOpenAI:
            model = OpenAIServerModel(
                model_id=model_id,
                api_base=api_base,
                api_key=api_key,
                organization=organization,
                project=project,
                client_kwargs=client_kwargs,
            )
        MockOpenAI.assert_called_once_with(
            base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5
        )
        assert model.client == MockOpenAI.return_value

    @require_run_all
    def test_streaming_tool_calls(self):
        model = OpenAIServerModel(model_id="gpt-4o-mini")
        messages = [
            ChatMessage(
                role=MessageRole.USER,
                content=[
                    {
                        "type": "text",
                        "text": "Hello! Please return the final answer 'blob' and the final answer 'blob2' in two parallel tool calls",
                    }
                ],
            ),
        ]
        for el in model.generate_stream(messages, tools_to_call_from=[FinalAnswerTool()]):
            if el.tool_calls:
                assert el.tool_calls[0].function.name == "final_answer"
                args = el.tool_calls[0].function.arguments
                if len(el.tool_calls) > 1:
                    assert el.tool_calls[1].function.name == "final_answer"
                    args2 = el.tool_calls[1].function.arguments
        assert args == '{"answer": "blob"}'
        assert args2 == '{"answer": "blob2"}'


class TestAmazonBedrockServerModel:
    def test_client_for_bedrock(self):
        model_id = "us.amazon.nova-pro-v1:0"

        with patch("boto3.client") as MockBoto3:
            model = AmazonBedrockServerModel(
                model_id=model_id,
            )

        assert model.client == MockBoto3.return_value


class TestAzureOpenAIServerModel:
    def test_client_kwargs_passed_correctly(self):
        model_id = "gpt-3.5-turbo"
        api_key = "test_api_key"
        api_version = "2023-12-01-preview"
        azure_endpoint = "https://example-resource.azure.openai.com/"
        organization = "test_org"
        project = "test_project"
        client_kwargs = {"max_retries": 5}

        with patch("openai.OpenAI") as MockOpenAI, patch("openai.AzureOpenAI") as MockAzureOpenAI:
            model = AzureOpenAIServerModel(
                model_id=model_id,
                api_key=api_key,
                api_version=api_version,
                azure_endpoint=azure_endpoint,
                organization=organization,
                project=project,
                client_kwargs=client_kwargs,
            )
        assert MockOpenAI.call_count == 0
        MockAzureOpenAI.assert_called_once_with(
            base_url=None,
            api_key=api_key,
            api_version=api_version,
            azure_endpoint=azure_endpoint,
            organization=organization,
            project=project,
            max_retries=5,
        )
        assert model.client == MockAzureOpenAI.return_value


class TestTransformersModel:
    @pytest.mark.parametrize(
        "patching",
        [
            [
                (
                    "transformers.AutoModelForImageTextToText.from_pretrained",
                    {"side_effect": ValueError("Unrecognized configuration class")},
                ),
                ("transformers.AutoModelForCausalLM.from_pretrained", {}),
                ("transformers.AutoTokenizer.from_pretrained", {}),
            ],
            [
                ("transformers.AutoModelForImageTextToText.from_pretrained", {}),
                ("transformers.AutoProcessor.from_pretrained", {}),
            ],
        ],
    )
    def test_init(self, patching):
        with ExitStack() as stack:
            mocks = {target: stack.enter_context(patch(target, **kwargs)) for target, kwargs in patching}
            model = TransformersModel(
                model_id="test-model", device_map="cpu", torch_dtype="float16", trust_remote_code=True
            )
        assert model.model_id == "test-model"
        if "transformers.AutoTokenizer.from_pretrained" in mocks:
            assert model.model == mocks["transformers.AutoModelForCausalLM.from_pretrained"].return_value
            assert mocks["transformers.AutoModelForCausalLM.from_pretrained"].call_args.kwargs == {
                "device_map": "cpu",
                "torch_dtype": "float16",
                "trust_remote_code": True,
            }
            assert model.tokenizer == mocks["transformers.AutoTokenizer.from_pretrained"].return_value
            assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.args == ("test-model",)
            assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.kwargs == {"trust_remote_code": True}
        elif "transformers.AutoProcessor.from_pretrained" in mocks:
            assert model.model == mocks["transformers.AutoModelForImageTextToText.from_pretrained"].return_value
            assert mocks["transformers.AutoModelForImageTextToText.from_pretrained"].call_args.kwargs == {
                "device_map": "cpu",
                "torch_dtype": "float16",
                "trust_remote_code": True,
            }
            assert model.processor == mocks["transformers.AutoProcessor.from_pretrained"].return_value
            assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.args == ("test-model",)
            assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.kwargs == {"trust_remote_code": True}


def test_get_clean_message_list_basic():
    messages = [
        ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]),
        ChatMessage(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": "Hi there!"}]),
    ]
    result = get_clean_message_list(messages)
    assert len(result) == 2
    assert result[0]["role"] == "user"
    assert result[0]["content"][0]["text"] == "Hello!"
    assert result[1]["role"] == "assistant"
    assert result[1]["content"][0]["text"] == "Hi there!"


def test_get_clean_message_list_role_conversions():
    messages = [
        ChatMessage(role=MessageRole.TOOL_CALL, content=[{"type": "text", "text": "Calling tool..."}]),
        ChatMessage(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": "Tool response"}]),
    ]
    result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"})
    assert len(result) == 2
    assert result[0]["role"] == "assistant"
    assert result[0]["content"][0]["text"] == "Calling tool..."
    assert result[1]["role"] == "user"
    assert result[1]["content"][0]["text"] == "Tool response"


@pytest.mark.parametrize(
    "convert_images_to_image_urls, expected_clean_message",
    [
        (
            False,
            dict(
                role=MessageRole.USER,
                content=[
                    {"type": "image", "image": "encoded_image"},
                    {"type": "image", "image": "second_encoded_image"},
                ],
            ),
        ),
        (
            True,
            dict(
                role=MessageRole.USER,
                content=[
                    {"type": "image_url", "image_url": {"url": "_image"}},
                    {"type": "image_url", "image_url": {"url": "_encoded_image"}},
                ],
            ),
        ),
    ],
)
def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message):
    message = ChatMessage(
        role=MessageRole.USER,
        content=[{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}],
    )
    with patch("smolagents.models.encode_image_base64") as mock_encode:
        mock_encode.side_effect = ["encoded_image", "second_encoded_image"]
        result = get_clean_message_list([message], convert_images_to_image_urls=convert_images_to_image_urls)
        mock_encode.assert_any_call(b"image_data")
        mock_encode.assert_any_call(b"second_image_data")
        assert len(result) == 1
        assert result[0] == expected_clean_message


def test_get_clean_message_list_flatten_messages_as_text():
    messages = [
        ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]),
        ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "How are you?"}]),
    ]
    result = get_clean_message_list(messages, flatten_messages_as_text=True)
    assert len(result) == 1
    assert result[0]["role"] == "user"
    assert result[0]["content"] == "Hello!\nHow are you?"


@pytest.mark.parametrize(
    "model_class, model_kwargs, patching, expected_flatten_messages_as_text",
    [
        (AzureOpenAIServerModel, {}, ("openai.AzureOpenAI", {}), False),
        (InferenceClientModel, {}, ("huggingface_hub.InferenceClient", {}), False),
        (LiteLLMModel, {}, None, False),
        (LiteLLMModel, {"model_id": "ollama"}, None, True),
        (LiteLLMModel, {"model_id": "groq"}, None, True),
        (LiteLLMModel, {"model_id": "cerebras"}, None, True),
        (MLXModel, {}, ("mlx_lm.load", {"return_value": (MagicMock(), MagicMock())}), True),
        (OpenAIServerModel, {}, ("openai.OpenAI", {}), False),
        (OpenAIServerModel, {"flatten_messages_as_text": True}, ("openai.OpenAI", {}), True),
        (
            TransformersModel,
            {},
            [
                (
                    "transformers.AutoModelForImageTextToText.from_pretrained",
                    {"side_effect": ValueError("Unrecognized configuration class")},
                ),
                ("transformers.AutoModelForCausalLM.from_pretrained", {}),
                ("transformers.AutoTokenizer.from_pretrained", {}),
            ],
            True,
        ),
        (
            TransformersModel,
            {},
            [
                ("transformers.AutoModelForImageTextToText.from_pretrained", {}),
                ("transformers.AutoProcessor.from_pretrained", {}),
            ],
            False,
        ),
    ],
)
def test_flatten_messages_as_text_for_all_models(
    model_class, model_kwargs, patching, expected_flatten_messages_as_text
):
    with ExitStack() as stack:
        if isinstance(patching, list):
            for target, kwargs in patching:
                stack.enter_context(patch(target, **kwargs))
        elif patching:
            target, kwargs = patching
            stack.enter_context(patch(target, **kwargs))

        model = model_class(**{"model_id": "test-model", **model_kwargs})
    assert model.flatten_messages_as_text is expected_flatten_messages_as_text, f"{model_class.__name__} failed"


@pytest.mark.parametrize(
    "model_id,expected",
    [
        # Unsupported base models
        ("o3", False),
        ("o4-mini", False),
        # Unsupported versioned models
        ("o3-2025-04-16", False),
        ("o4-mini-2025-04-16", False),
        # Unsupported models with path prefixes
        ("openai/o3", False),
        ("openai/o4-mini", False),
        ("openai/o3-2025-04-16", False),
        ("openai/o4-mini-2025-04-16", False),
        # Supported models
        ("o3-mini", True),  # Different from o3
        ("o3-mini-2025-01-31", True),  # Different from o3
        ("o4", True),  # Different from o4-mini
        ("o4-turbo", True),  # Different from o4-mini
        ("gpt-4", True),
        ("claude-3-5-sonnet", True),
        ("mistral-large", True),
        # Supported models with path prefixes
        ("openai/gpt-4", True),
        ("anthropic/claude-3-5-sonnet", True),
        ("mistralai/mistral-large", True),
        # Edge cases
        ("", True),  # Empty string doesn't match pattern
        ("o3x", True),  # Not exactly o3
        ("o3_mini", True),  # Not o3-mini format
        ("prefix-o3", True),  # o3 not at start
    ],
)
def test_supports_stop_parameter(model_id, expected):
    """Test the supports_stop_parameter function with various model IDs"""
    assert supports_stop_parameter(model_id) == expected, f"Failed for model_id: {model_id}"


class TestGetToolCallFromText:
    @pytest.fixture(autouse=True)
    def mock_uuid4(self):
        with patch("uuid.uuid4", return_value="test-uuid"):
            yield

    def test_get_tool_call_from_text_basic(self):
        text = '{"name": "weather_tool", "arguments": "New York"}'
        result = get_tool_call_from_text(text, "name", "arguments")
        assert isinstance(result, ChatMessageToolCall)
        assert result.id == "test-uuid"
        assert result.type == "function"
        assert result.function.name == "weather_tool"
        assert result.function.arguments == "New York"

    def test_get_tool_call_from_text_name_key_missing(self):
        text = '{"action": "weather_tool", "arguments": "New York"}'
        with pytest.raises(ValueError) as exc_info:
            get_tool_call_from_text(text, "name", "arguments")
        error_msg = str(exc_info.value)
        assert "Key tool_name_key='name' not found" in error_msg
        assert "'action', 'arguments'" in error_msg

    def test_get_tool_call_from_text_json_object_args(self):
        text = '{"name": "weather_tool", "arguments": {"city": "New York"}}'
        result = get_tool_call_from_text(text, "name", "arguments")
        assert result.function.arguments == {"city": "New York"}

    def test_get_tool_call_from_text_json_string_args(self):
        text = '{"name": "weather_tool", "arguments": "{\\"city\\": \\"New York\\"}"}'
        result = get_tool_call_from_text(text, "name", "arguments")
        assert result.function.arguments == {"city": "New York"}

    def test_get_tool_call_from_text_missing_args(self):
        text = '{"name": "weather_tool"}'
        result = get_tool_call_from_text(text, "name", "arguments")
        assert result.function.arguments is None

    def test_get_tool_call_from_text_custom_keys(self):
        text = '{"tool": "weather_tool", "params": "New York"}'
        result = get_tool_call_from_text(text, "tool", "params")
        assert result.function.name == "weather_tool"
        assert result.function.arguments == "New York"

    def test_get_tool_call_from_text_numeric_args(self):
        text = '{"name": "calculator", "arguments": 42}'
        result = get_tool_call_from_text(text, "name", "arguments")
        assert result.function.name == "calculator"
        assert result.function.arguments == 42