File size: 33,156 Bytes
9c31777 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import unittest
from contextlib import ExitStack
from unittest.mock import MagicMock, patch
import pytest
from huggingface_hub import ChatCompletionOutputMessage
from smolagents.default_tools import FinalAnswerTool
from smolagents.models import (
AmazonBedrockServerModel,
AzureOpenAIServerModel,
ChatMessage,
ChatMessageToolCall,
InferenceClientModel,
LiteLLMModel,
LiteLLMRouterModel,
MessageRole,
MLXModel,
Model,
OpenAIServerModel,
TransformersModel,
get_clean_message_list,
get_tool_call_from_text,
get_tool_json_schema,
parse_json_if_needed,
supports_stop_parameter,
)
from smolagents.tools import tool
from .utils.markers import require_run_all
class TestModel:
def test_agglomerate_stream_deltas(self):
from smolagents.models import (
ChatMessageStreamDelta,
ChatMessageToolCallFunction,
ChatMessageToolCallStreamDelta,
TokenUsage,
agglomerate_stream_deltas,
)
stream_deltas = [
ChatMessageStreamDelta(
content="Hi",
tool_calls=[
ChatMessageToolCallStreamDelta(
index=0,
type="function",
function=ChatMessageToolCallFunction(arguments="", name="web_search", description=None),
)
],
token_usage=None,
),
ChatMessageStreamDelta(
content=" everyone",
tool_calls=[
ChatMessageToolCallStreamDelta(
index=0,
type="function",
function=ChatMessageToolCallFunction(arguments=' {"', name="web_search", description=None),
)
],
token_usage=None,
),
ChatMessageStreamDelta(
content=", it's",
tool_calls=[
ChatMessageToolCallStreamDelta(
index=0,
type="function",
function=ChatMessageToolCallFunction(
arguments='query": "current pope name and date of birth"}',
name="web_search",
description=None,
),
)
],
token_usage=None,
),
ChatMessageStreamDelta(
content="",
tool_calls=None,
token_usage=TokenUsage(input_tokens=1348, output_tokens=24),
),
]
agglomerated_stream_delta = agglomerate_stream_deltas(stream_deltas)
assert agglomerated_stream_delta.content == "Hi everyone, it's"
assert (
agglomerated_stream_delta.tool_calls[0].function.arguments
== ' {"query": "current pope name and date of birth"}'
)
assert agglomerated_stream_delta.token_usage.total_tokens == 1372
@pytest.mark.parametrize(
"model_id, stop_sequences, should_contain_stop",
[
("regular-model", ["stop1", "stop2"], True), # Regular model should include stop
("openai/o3", ["stop1", "stop2"], False), # o3 model should not include stop
("openai/o4-mini", ["stop1", "stop2"], False), # o4-mini model should not include stop
("something/else/o3", ["stop1", "stop2"], False), # Path ending with o3 should not include stop
("something/else/o4-mini", ["stop1", "stop2"], False), # Path ending with o4-mini should not include stop
("o3", ["stop1", "stop2"], False), # Exact o3 model should not include stop
("o4-mini", ["stop1", "stop2"], False), # Exact o4-mini model should not include stop
("regular-model", None, False), # None stop_sequences should not add stop parameter
],
)
def test_prepare_completion_kwargs_stop_sequences(self, model_id, stop_sequences, should_contain_stop):
model = Model()
model.model_id = model_id
completion_kwargs = model._prepare_completion_kwargs(
messages=[
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}]),
],
stop_sequences=stop_sequences,
)
# Verify that the stop parameter is only included when appropriate
if should_contain_stop:
assert "stop" in completion_kwargs
assert completion_kwargs["stop"] == stop_sequences
else:
assert "stop" not in completion_kwargs
@pytest.mark.parametrize(
"with_tools, tool_choice, expected_result",
[
# Default behavior: With tools but no explicit tool_choice, should default to "required"
(True, ..., {"has_tool_choice": True, "value": "required"}),
# Custom value: With tools and explicit tool_choice="auto"
(True, "auto", {"has_tool_choice": True, "value": "auto"}),
# Tool name as string
(True, "valid_tool_function", {"has_tool_choice": True, "value": "valid_tool_function"}),
# Tool choice as dictionary
(
True,
{"type": "function", "function": {"name": "valid_tool_function"}},
{"has_tool_choice": True, "value": {"type": "function", "function": {"name": "valid_tool_function"}}},
),
# With tools but explicit None tool_choice: should exclude tool_choice
(True, None, {"has_tool_choice": False, "value": None}),
# Without tools: tool_choice should never be included
(False, "required", {"has_tool_choice": False, "value": None}),
(False, "auto", {"has_tool_choice": False, "value": None}),
(False, None, {"has_tool_choice": False, "value": None}),
(False, ..., {"has_tool_choice": False, "value": None}),
],
)
def test_prepare_completion_kwargs_tool_choice(self, with_tools, tool_choice, expected_result, example_tool):
model = Model()
kwargs = {"messages": [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello"}])]}
if with_tools:
kwargs["tools_to_call_from"] = [example_tool]
if tool_choice is not ...:
kwargs["tool_choice"] = tool_choice
completion_kwargs = model._prepare_completion_kwargs(**kwargs)
if expected_result["has_tool_choice"]:
assert "tool_choice" in completion_kwargs
assert completion_kwargs["tool_choice"] == expected_result["value"]
else:
assert "tool_choice" not in completion_kwargs
def test_get_json_schema_has_nullable_args(self):
@tool
def get_weather(location: str, celsius: bool | None = False) -> str:
"""
Get weather in the next days at given location.
Secretly this tool does not care about the location, it hates the weather everywhere.
Args:
location: the location
celsius: the temperature type
"""
return "The weather is UNGODLY with torrential rains and temperatures below -10°C"
assert "nullable" in get_tool_json_schema(get_weather)["function"]["parameters"]["properties"]["celsius"]
def test_chatmessage_has_model_dumps_json(self):
message = ChatMessage("user", [{"type": "text", "text": "Hello!"}])
data = json.loads(message.model_dump_json())
assert data["content"] == [{"type": "text", "text": "Hello!"}]
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
def test_get_mlx_message_no_tool(self):
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=10)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
output = model(messages, stop_sequences=["great"]).content
assert output.startswith("Hello")
@unittest.skipUnless(sys.platform.startswith("darwin"), "requires macOS")
def test_get_mlx_message_tricky_stop_sequence(self):
# In this test HuggingFaceTB/SmolLM2-135M-Instruct generates the token ">'"
# which is required to test capturing stop_sequences that have extra chars at the end.
model = MLXModel(model_id="HuggingFaceTB/SmolLM2-135M-Instruct", max_tokens=100)
stop_sequence = " print '>"
messages = [
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": f"Please{stop_sequence}'"}]),
]
# check our assumption that that ">" is followed by "'"
assert model.tokenizer.vocab[">'"]
assert model(messages, stop_sequences=[]).content == f"I'm ready to help you{stop_sequence}'"
# check stop_sequence capture when output has trailing chars
assert model(messages, stop_sequences=[stop_sequence]).content == "I'm ready to help you"
def test_transformers_message_no_tool(self, monkeypatch):
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) # instead of 10
model = TransformersModel(
model_id="HuggingFaceTB/SmolLM2-135M-Instruct",
max_new_tokens=5,
device_map="cpu",
do_sample=False,
)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
output = model.generate(messages).content
assert output == "Hello! I'm here"
output = model.generate_stream(messages, stop_sequences=["great"])
output_str = ""
for el in output:
output_str += el.content
assert output_str == "Hello! I'm here"
def test_transformers_message_vl_no_tool(self, shared_datadir, monkeypatch):
monkeypatch.setattr("huggingface_hub.constants.HF_HUB_DOWNLOAD_TIMEOUT", 30) # instead of 10
import PIL.Image
img = PIL.Image.open(shared_datadir / "000000039769.png")
model = TransformersModel(
model_id="llava-hf/llava-interleave-qwen-0.5b-hf",
max_new_tokens=4,
device_map="cpu",
do_sample=False,
)
messages = [
ChatMessage(
role=MessageRole.USER,
content=[{"type": "text", "text": "What is this?"}, {"type": "image", "image": img}],
)
]
output = model.generate(messages).content
assert output == "This is a very"
output = model.generate_stream(messages, stop_sequences=["great"])
output_str = ""
for el in output:
output_str += el.content
assert output_str == "This is a very"
def test_parse_json_if_needed(self):
args = "abc"
parsed_args = parse_json_if_needed(args)
assert parsed_args == "abc"
args = '{"a": 3}'
parsed_args = parse_json_if_needed(args)
assert parsed_args == {"a": 3}
args = "3"
parsed_args = parse_json_if_needed(args)
assert parsed_args == 3
args = 3
parsed_args = parse_json_if_needed(args)
assert parsed_args == 3
class TestInferenceClientModel:
def test_call_with_custom_role_conversions(self):
custom_role_conversions = {MessageRole.USER: MessageRole.SYSTEM}
model = InferenceClientModel(model_id="test-model", custom_role_conversions=custom_role_conversions)
model.client = MagicMock()
mock_response = model.client.chat_completion.return_value
mock_response.choices[0].message = ChatCompletionOutputMessage(role=MessageRole.ASSISTANT)
messages = [ChatMessage(role=MessageRole.USER, content="Test message")]
_ = model(messages)
# Verify that the role conversion was applied
assert model.client.chat_completion.call_args.kwargs["messages"][0]["role"] == "system", (
"role conversion should be applied"
)
def test_init_model_with_tokens(self):
model = InferenceClientModel(model_id="test-model", token="abc")
assert model.client.token == "abc"
model = InferenceClientModel(model_id="test-model", api_key="abc")
assert model.client.token == "abc"
with pytest.raises(ValueError, match="Received both `token` and `api_key` arguments."):
InferenceClientModel(model_id="test-model", token="abc", api_key="def")
def test_structured_outputs_with_unsupported_provider(self):
with pytest.raises(
ValueError, match="InferenceClientModel only supports structured outputs with these providers:"
):
model = InferenceClientModel(model_id="test-model", token="abc", provider="some_provider")
model.generate(
messages=[ChatMessage(role=MessageRole.USER, content="Hello!")],
response_format={"type": "json_object"},
)
@require_run_all
def test_get_hfapi_message_no_tool(self):
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
model(messages, stop_sequences=["great"])
@require_run_all
def test_get_hfapi_message_no_tool_external_provider(self):
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
model(messages, stop_sequences=["great"])
@require_run_all
def test_get_hfapi_message_stream_no_tool(self):
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", max_tokens=10)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
for el in model.generate_stream(messages, stop_sequences=["great"]):
assert el.content is not None
@require_run_all
def test_get_hfapi_message_stream_no_tool_external_provider(self):
model = InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct", provider="together", max_tokens=10)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}])]
for el in model.generate_stream(messages, stop_sequences=["great"]):
assert el.content is not None
class TestLiteLLMModel:
@pytest.mark.parametrize(
"model_id, error_flag",
[
("groq/llama-3.3-70b", "Invalid API Key"),
("cerebras/llama-3.3-70b", "The api_key client option must be set"),
("mistral/mistral-tiny", "The api_key client option must be set"),
],
)
def test_call_different_providers_without_key(self, model_id, error_flag):
model = LiteLLMModel(model_id=model_id)
messages = [ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Test message"}])]
with pytest.raises(Exception) as e:
# This should raise 401 error because of missing API key, not fail for any "bad format" reason
model.generate(messages)
assert error_flag in str(e)
with pytest.raises(Exception) as e:
# This should raise 401 error because of missing API key, not fail for any "bad format" reason
for el in model.generate_stream(messages):
assert el.content is not None
assert error_flag in str(e)
def test_passing_flatten_messages(self):
model = LiteLLMModel(model_id="groq/llama-3.3-70b", flatten_messages_as_text=False)
assert not model.flatten_messages_as_text
model = LiteLLMModel(model_id="fal/llama-3.3-70b", flatten_messages_as_text=True)
assert model.flatten_messages_as_text
class TestLiteLLMRouterModel:
@pytest.mark.parametrize(
"model_id, expected",
[
("llama-3.3-70b", False),
("llama-3.3-70b", True),
("mistral-tiny", True),
],
)
def test_flatten_messages_as_text(self, model_id, expected):
model_list = [
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}},
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}},
{"model_name": "mistral-tiny", "litellm_params": {"model": "mistral/mistral-tiny"}},
]
model = LiteLLMRouterModel(model_id=model_id, model_list=model_list, flatten_messages_as_text=expected)
assert model.flatten_messages_as_text is expected
def test_create_client(self):
model_list = [
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "groq/llama-3.3-70b"}},
{"model_name": "llama-3.3-70b", "litellm_params": {"model": "cerebras/llama-3.3-70b"}},
]
with patch("litellm.router.Router") as mock_router:
router_model = LiteLLMRouterModel(
model_id="model-group-1", model_list=model_list, client_kwargs={"routing_strategy": "simple-shuffle"}
)
# Ensure that the Router constructor was called with the expected keyword arguments
mock_router.assert_called_once()
assert mock_router.call_count == 1
assert mock_router.call_args.kwargs["model_list"] == model_list
assert mock_router.call_args.kwargs["routing_strategy"] == "simple-shuffle"
assert router_model.client == mock_router.return_value
class TestOpenAIServerModel:
def test_client_kwargs_passed_correctly(self):
model_id = "gpt-3.5-turbo"
api_base = "https://api.openai.com/v1"
api_key = "test_api_key"
organization = "test_org"
project = "test_project"
client_kwargs = {"max_retries": 5}
with patch("openai.OpenAI") as MockOpenAI:
model = OpenAIServerModel(
model_id=model_id,
api_base=api_base,
api_key=api_key,
organization=organization,
project=project,
client_kwargs=client_kwargs,
)
MockOpenAI.assert_called_once_with(
base_url=api_base, api_key=api_key, organization=organization, project=project, max_retries=5
)
assert model.client == MockOpenAI.return_value
@require_run_all
def test_streaming_tool_calls(self):
model = OpenAIServerModel(model_id="gpt-4o-mini")
messages = [
ChatMessage(
role=MessageRole.USER,
content=[
{
"type": "text",
"text": "Hello! Please return the final answer 'blob' and the final answer 'blob2' in two parallel tool calls",
}
],
),
]
for el in model.generate_stream(messages, tools_to_call_from=[FinalAnswerTool()]):
if el.tool_calls:
assert el.tool_calls[0].function.name == "final_answer"
args = el.tool_calls[0].function.arguments
if len(el.tool_calls) > 1:
assert el.tool_calls[1].function.name == "final_answer"
args2 = el.tool_calls[1].function.arguments
assert args == '{"answer": "blob"}'
assert args2 == '{"answer": "blob2"}'
class TestAmazonBedrockServerModel:
def test_client_for_bedrock(self):
model_id = "us.amazon.nova-pro-v1:0"
with patch("boto3.client") as MockBoto3:
model = AmazonBedrockServerModel(
model_id=model_id,
)
assert model.client == MockBoto3.return_value
class TestAzureOpenAIServerModel:
def test_client_kwargs_passed_correctly(self):
model_id = "gpt-3.5-turbo"
api_key = "test_api_key"
api_version = "2023-12-01-preview"
azure_endpoint = "https://example-resource.azure.openai.com/"
organization = "test_org"
project = "test_project"
client_kwargs = {"max_retries": 5}
with patch("openai.OpenAI") as MockOpenAI, patch("openai.AzureOpenAI") as MockAzureOpenAI:
model = AzureOpenAIServerModel(
model_id=model_id,
api_key=api_key,
api_version=api_version,
azure_endpoint=azure_endpoint,
organization=organization,
project=project,
client_kwargs=client_kwargs,
)
assert MockOpenAI.call_count == 0
MockAzureOpenAI.assert_called_once_with(
base_url=None,
api_key=api_key,
api_version=api_version,
azure_endpoint=azure_endpoint,
organization=organization,
project=project,
max_retries=5,
)
assert model.client == MockAzureOpenAI.return_value
class TestTransformersModel:
@pytest.mark.parametrize(
"patching",
[
[
(
"transformers.AutoModelForImageTextToText.from_pretrained",
{"side_effect": ValueError("Unrecognized configuration class")},
),
("transformers.AutoModelForCausalLM.from_pretrained", {}),
("transformers.AutoTokenizer.from_pretrained", {}),
],
[
("transformers.AutoModelForImageTextToText.from_pretrained", {}),
("transformers.AutoProcessor.from_pretrained", {}),
],
],
)
def test_init(self, patching):
with ExitStack() as stack:
mocks = {target: stack.enter_context(patch(target, **kwargs)) for target, kwargs in patching}
model = TransformersModel(
model_id="test-model", device_map="cpu", torch_dtype="float16", trust_remote_code=True
)
assert model.model_id == "test-model"
if "transformers.AutoTokenizer.from_pretrained" in mocks:
assert model.model == mocks["transformers.AutoModelForCausalLM.from_pretrained"].return_value
assert mocks["transformers.AutoModelForCausalLM.from_pretrained"].call_args.kwargs == {
"device_map": "cpu",
"torch_dtype": "float16",
"trust_remote_code": True,
}
assert model.tokenizer == mocks["transformers.AutoTokenizer.from_pretrained"].return_value
assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.args == ("test-model",)
assert mocks["transformers.AutoTokenizer.from_pretrained"].call_args.kwargs == {"trust_remote_code": True}
elif "transformers.AutoProcessor.from_pretrained" in mocks:
assert model.model == mocks["transformers.AutoModelForImageTextToText.from_pretrained"].return_value
assert mocks["transformers.AutoModelForImageTextToText.from_pretrained"].call_args.kwargs == {
"device_map": "cpu",
"torch_dtype": "float16",
"trust_remote_code": True,
}
assert model.processor == mocks["transformers.AutoProcessor.from_pretrained"].return_value
assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.args == ("test-model",)
assert mocks["transformers.AutoProcessor.from_pretrained"].call_args.kwargs == {"trust_remote_code": True}
def test_get_clean_message_list_basic():
messages = [
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]),
ChatMessage(role=MessageRole.ASSISTANT, content=[{"type": "text", "text": "Hi there!"}]),
]
result = get_clean_message_list(messages)
assert len(result) == 2
assert result[0]["role"] == "user"
assert result[0]["content"][0]["text"] == "Hello!"
assert result[1]["role"] == "assistant"
assert result[1]["content"][0]["text"] == "Hi there!"
def test_get_clean_message_list_role_conversions():
messages = [
ChatMessage(role=MessageRole.TOOL_CALL, content=[{"type": "text", "text": "Calling tool..."}]),
ChatMessage(role=MessageRole.TOOL_RESPONSE, content=[{"type": "text", "text": "Tool response"}]),
]
result = get_clean_message_list(messages, role_conversions={"tool-call": "assistant", "tool-response": "user"})
assert len(result) == 2
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["text"] == "Calling tool..."
assert result[1]["role"] == "user"
assert result[1]["content"][0]["text"] == "Tool response"
@pytest.mark.parametrize(
"convert_images_to_image_urls, expected_clean_message",
[
(
False,
dict(
role=MessageRole.USER,
content=[
{"type": "image", "image": "encoded_image"},
{"type": "image", "image": "second_encoded_image"},
],
),
),
(
True,
dict(
role=MessageRole.USER,
content=[
{"type": "image_url", "image_url": {"url": "_image"}},
{"type": "image_url", "image_url": {"url": "_encoded_image"}},
],
),
),
],
)
def test_get_clean_message_list_image_encoding(convert_images_to_image_urls, expected_clean_message):
message = ChatMessage(
role=MessageRole.USER,
content=[{"type": "image", "image": b"image_data"}, {"type": "image", "image": b"second_image_data"}],
)
with patch("smolagents.models.encode_image_base64") as mock_encode:
mock_encode.side_effect = ["encoded_image", "second_encoded_image"]
result = get_clean_message_list([message], convert_images_to_image_urls=convert_images_to_image_urls)
mock_encode.assert_any_call(b"image_data")
mock_encode.assert_any_call(b"second_image_data")
assert len(result) == 1
assert result[0] == expected_clean_message
def test_get_clean_message_list_flatten_messages_as_text():
messages = [
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "Hello!"}]),
ChatMessage(role=MessageRole.USER, content=[{"type": "text", "text": "How are you?"}]),
]
result = get_clean_message_list(messages, flatten_messages_as_text=True)
assert len(result) == 1
assert result[0]["role"] == "user"
assert result[0]["content"] == "Hello!\nHow are you?"
@pytest.mark.parametrize(
"model_class, model_kwargs, patching, expected_flatten_messages_as_text",
[
(AzureOpenAIServerModel, {}, ("openai.AzureOpenAI", {}), False),
(InferenceClientModel, {}, ("huggingface_hub.InferenceClient", {}), False),
(LiteLLMModel, {}, None, False),
(LiteLLMModel, {"model_id": "ollama"}, None, True),
(LiteLLMModel, {"model_id": "groq"}, None, True),
(LiteLLMModel, {"model_id": "cerebras"}, None, True),
(MLXModel, {}, ("mlx_lm.load", {"return_value": (MagicMock(), MagicMock())}), True),
(OpenAIServerModel, {}, ("openai.OpenAI", {}), False),
(OpenAIServerModel, {"flatten_messages_as_text": True}, ("openai.OpenAI", {}), True),
(
TransformersModel,
{},
[
(
"transformers.AutoModelForImageTextToText.from_pretrained",
{"side_effect": ValueError("Unrecognized configuration class")},
),
("transformers.AutoModelForCausalLM.from_pretrained", {}),
("transformers.AutoTokenizer.from_pretrained", {}),
],
True,
),
(
TransformersModel,
{},
[
("transformers.AutoModelForImageTextToText.from_pretrained", {}),
("transformers.AutoProcessor.from_pretrained", {}),
],
False,
),
],
)
def test_flatten_messages_as_text_for_all_models(
model_class, model_kwargs, patching, expected_flatten_messages_as_text
):
with ExitStack() as stack:
if isinstance(patching, list):
for target, kwargs in patching:
stack.enter_context(patch(target, **kwargs))
elif patching:
target, kwargs = patching
stack.enter_context(patch(target, **kwargs))
model = model_class(**{"model_id": "test-model", **model_kwargs})
assert model.flatten_messages_as_text is expected_flatten_messages_as_text, f"{model_class.__name__} failed"
@pytest.mark.parametrize(
"model_id,expected",
[
# Unsupported base models
("o3", False),
("o4-mini", False),
# Unsupported versioned models
("o3-2025-04-16", False),
("o4-mini-2025-04-16", False),
# Unsupported models with path prefixes
("openai/o3", False),
("openai/o4-mini", False),
("openai/o3-2025-04-16", False),
("openai/o4-mini-2025-04-16", False),
# Supported models
("o3-mini", True), # Different from o3
("o3-mini-2025-01-31", True), # Different from o3
("o4", True), # Different from o4-mini
("o4-turbo", True), # Different from o4-mini
("gpt-4", True),
("claude-3-5-sonnet", True),
("mistral-large", True),
# Supported models with path prefixes
("openai/gpt-4", True),
("anthropic/claude-3-5-sonnet", True),
("mistralai/mistral-large", True),
# Edge cases
("", True), # Empty string doesn't match pattern
("o3x", True), # Not exactly o3
("o3_mini", True), # Not o3-mini format
("prefix-o3", True), # o3 not at start
],
)
def test_supports_stop_parameter(model_id, expected):
"""Test the supports_stop_parameter function with various model IDs"""
assert supports_stop_parameter(model_id) == expected, f"Failed for model_id: {model_id}"
class TestGetToolCallFromText:
@pytest.fixture(autouse=True)
def mock_uuid4(self):
with patch("uuid.uuid4", return_value="test-uuid"):
yield
def test_get_tool_call_from_text_basic(self):
text = '{"name": "weather_tool", "arguments": "New York"}'
result = get_tool_call_from_text(text, "name", "arguments")
assert isinstance(result, ChatMessageToolCall)
assert result.id == "test-uuid"
assert result.type == "function"
assert result.function.name == "weather_tool"
assert result.function.arguments == "New York"
def test_get_tool_call_from_text_name_key_missing(self):
text = '{"action": "weather_tool", "arguments": "New York"}'
with pytest.raises(ValueError) as exc_info:
get_tool_call_from_text(text, "name", "arguments")
error_msg = str(exc_info.value)
assert "Key tool_name_key='name' not found" in error_msg
assert "'action', 'arguments'" in error_msg
def test_get_tool_call_from_text_json_object_args(self):
text = '{"name": "weather_tool", "arguments": {"city": "New York"}}'
result = get_tool_call_from_text(text, "name", "arguments")
assert result.function.arguments == {"city": "New York"}
def test_get_tool_call_from_text_json_string_args(self):
text = '{"name": "weather_tool", "arguments": "{\\"city\\": \\"New York\\"}"}'
result = get_tool_call_from_text(text, "name", "arguments")
assert result.function.arguments == {"city": "New York"}
def test_get_tool_call_from_text_missing_args(self):
text = '{"name": "weather_tool"}'
result = get_tool_call_from_text(text, "name", "arguments")
assert result.function.arguments is None
def test_get_tool_call_from_text_custom_keys(self):
text = '{"tool": "weather_tool", "params": "New York"}'
result = get_tool_call_from_text(text, "tool", "params")
assert result.function.name == "weather_tool"
assert result.function.arguments == "New York"
def test_get_tool_call_from_text_numeric_args(self):
text = '{"name": "calculator", "arguments": 42}'
result = get_tool_call_from_text(text, "name", "arguments")
assert result.function.name == "calculator"
assert result.function.arguments == 42
|