File size: 8,400 Bytes
9c31777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import PIL.Image
import pytest

from smolagents import (
    CodeAgent,
    RunResult,
    ToolCallingAgent,
    stream_to_gradio,
)
from smolagents.models import (
    ChatMessage,
    ChatMessageToolCall,
    ChatMessageToolCallFunction,
    MessageRole,
    Model,
    TokenUsage,
)


class FakeLLMModel(Model):
    def __init__(self, give_token_usage: bool = True):
        self.give_token_usage = give_token_usage

    def generate(self, prompt, tools_to_call_from=None, **kwargs):
        if tools_to_call_from is not None:
            return ChatMessage(
                role=MessageRole.ASSISTANT,
                content="",
                tool_calls=[
                    ChatMessageToolCall(
                        id="fake_id",
                        type="function",
                        function=ChatMessageToolCallFunction(name="final_answer", arguments={"answer": "image"}),
                    )
                ],
                token_usage=TokenUsage(input_tokens=10, output_tokens=20) if self.give_token_usage else None,
            )
        else:
            return ChatMessage(
                role=MessageRole.ASSISTANT,
                content="""<code>
final_answer('This is the final answer.')
</code>""",
                token_usage=TokenUsage(input_tokens=10, output_tokens=20) if self.give_token_usage else None,
            )


class MonitoringTester(unittest.TestCase):
    def test_code_agent_metrics(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )
        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 10)
        self.assertEqual(agent.monitor.total_output_token_count, 20)

    def test_toolcalling_agent_metrics(self):
        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
        )

        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 10)
        self.assertEqual(agent.monitor.total_output_token_count, 20)

    def test_code_agent_metrics_max_steps(self):
        class FakeLLMModelMalformedAnswer(Model):
            def generate(self, prompt, **kwargs):
                return ChatMessage(
                    role=MessageRole.ASSISTANT,
                    content="Malformed answer",
                    token_usage=TokenUsage(input_tokens=10, output_tokens=20),
                )

        agent = CodeAgent(
            tools=[],
            model=FakeLLMModelMalformedAnswer(),
            max_steps=1,
        )

        agent.run("Fake task")

        self.assertEqual(agent.monitor.total_input_token_count, 20)
        self.assertEqual(agent.monitor.total_output_token_count, 40)

    def test_code_agent_metrics_generation_error(self):
        class FakeLLMModelGenerationException(Model):
            def generate(self, prompt, **kwargs):
                raise Exception("Cannot generate")

        agent = CodeAgent(
            tools=[],
            model=FakeLLMModelGenerationException(),
            max_steps=1,
        )
        with pytest.raises(Exception) as e:
            agent.run("Fake task")
        assert "Cannot generate" in str(e.value)

    def test_streaming_agent_text_output(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
            planning_interval=2,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(stream_to_gradio(agent, task="Test task"))

        self.assertEqual(len(outputs), 11)
        plan_message = outputs[1]
        self.assertEqual(plan_message.role, "assistant")
        self.assertIn("<code>", plan_message.content)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIn("This is the final answer.", final_message.content)

    def test_streaming_agent_image_output(self):
        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
            verbosity_level=100,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(
            stream_to_gradio(
                agent,
                task="Test task",
                additional_args=dict(image=PIL.Image.new("RGB", (100, 100))),
            )
        )

        self.assertEqual(len(outputs), 7)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIsInstance(final_message.content, dict)
        self.assertEqual(final_message.content["mime_type"], "image/png")

    def test_streaming_with_agent_error(self):
        class DummyModel(Model):
            def generate(self, prompt, **kwargs):
                return ChatMessage(role=MessageRole.ASSISTANT, content="Malformed call")

        agent = CodeAgent(
            tools=[],
            model=DummyModel(),
            max_steps=1,
        )

        # Use stream_to_gradio to capture the output
        outputs = list(stream_to_gradio(agent, task="Test task"))

        self.assertEqual(len(outputs), 11)
        final_message = outputs[-1]
        self.assertEqual(final_message.role, "assistant")
        self.assertIn("Malformed call", final_message.content)

    def test_run_return_full_result(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
            return_full_result=True,
        )

        result = agent.run("Fake task")

        self.assertIsInstance(result, RunResult)
        self.assertEqual(result.output, "This is the final answer.")
        self.assertEqual(result.state, "success")
        self.assertEqual(result.token_usage, TokenUsage(input_tokens=10, output_tokens=20))
        self.assertIsInstance(result.messages, list)
        self.assertGreater(result.timing.duration, 0)

        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(),
            max_steps=1,
            return_full_result=True,
        )

        result = agent.run("Fake task")

        self.assertIsInstance(result, RunResult)
        self.assertEqual(result.output, "image")
        self.assertEqual(result.state, "success")
        self.assertEqual(result.token_usage, TokenUsage(input_tokens=10, output_tokens=20))
        self.assertIsInstance(result.messages, list)
        self.assertGreater(result.timing.duration, 0)

        # Below 2 lines should be removed when the attributes are removed
        assert agent.monitor.total_input_token_count == 10
        assert agent.monitor.total_output_token_count == 20

    def test_run_result_no_token_usage(self):
        agent = CodeAgent(
            tools=[],
            model=FakeLLMModel(give_token_usage=False),
            max_steps=1,
            return_full_result=True,
        )

        result = agent.run("Fake task")

        self.assertIsInstance(result, RunResult)
        self.assertEqual(result.output, "This is the final answer.")
        self.assertEqual(result.state, "success")
        self.assertIsNone(result.token_usage)
        self.assertIsInstance(result.messages, list)
        self.assertGreater(result.timing.duration, 0)

        agent = ToolCallingAgent(
            tools=[],
            model=FakeLLMModel(give_token_usage=False),
            max_steps=1,
            return_full_result=True,
        )

        result = agent.run("Fake task")

        self.assertIsInstance(result, RunResult)
        self.assertEqual(result.output, "image")
        self.assertEqual(result.state, "success")
        self.assertIsNone(result.token_usage)
        self.assertIsInstance(result.messages, list)
        self.assertGreater(result.timing.duration, 0)