|
|
|
|
|
|
|
import datasets |
|
from langchain.docstore.document import Document |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.retrievers import BM25Retriever |
|
|
|
|
|
knowledge_base = datasets.load_dataset("m-ric/huggingface_doc", split="train") |
|
knowledge_base = knowledge_base.filter(lambda row: row["source"].startswith("huggingface/transformers")) |
|
|
|
source_docs = [ |
|
Document(page_content=doc["text"], metadata={"source": doc["source"].split("/")[1]}) for doc in knowledge_base |
|
] |
|
|
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size=500, |
|
chunk_overlap=50, |
|
add_start_index=True, |
|
strip_whitespace=True, |
|
separators=["\n\n", "\n", ".", " ", ""], |
|
) |
|
docs_processed = text_splitter.split_documents(source_docs) |
|
|
|
from smolagents import Tool |
|
|
|
|
|
class RetrieverTool(Tool): |
|
name = "retriever" |
|
description = "Uses lexical search to retrieve the parts of transformers documentation that could be most relevant to answer your query." |
|
inputs = { |
|
"query": { |
|
"type": "string", |
|
"description": "The query to perform. This should be lexically close to your target documents. Use the affirmative form rather than a question.", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def __init__(self, docs, **kwargs): |
|
super().__init__(**kwargs) |
|
self.retriever = BM25Retriever.from_documents(docs, k=10) |
|
|
|
def forward(self, query: str) -> str: |
|
assert isinstance(query, str), "Your search query must be a string" |
|
|
|
docs = self.retriever.invoke( |
|
query, |
|
) |
|
return "\nRetrieved documents:\n" + "".join( |
|
[f"\n\n===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)] |
|
) |
|
|
|
|
|
from smolagents import CodeAgent, InferenceClientModel |
|
|
|
|
|
retriever_tool = RetrieverTool(docs_processed) |
|
agent = CodeAgent( |
|
tools=[retriever_tool], |
|
model=InferenceClientModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), |
|
max_steps=4, |
|
verbosity_level=2, |
|
stream_outputs=True, |
|
) |
|
|
|
agent_output = agent.run("For a transformers model training, which is slower, the forward or the backward pass?") |
|
|
|
print("Final output:") |
|
print(agent_output) |
|
|