|
from sqlalchemy import ( |
|
Column, |
|
Float, |
|
Integer, |
|
MetaData, |
|
String, |
|
Table, |
|
create_engine, |
|
insert, |
|
inspect, |
|
text, |
|
) |
|
|
|
|
|
engine = create_engine("sqlite:///:memory:") |
|
metadata_obj = MetaData() |
|
|
|
|
|
table_name = "receipts" |
|
receipts = Table( |
|
table_name, |
|
metadata_obj, |
|
Column("receipt_id", Integer, primary_key=True), |
|
Column("customer_name", String(16), primary_key=True), |
|
Column("price", Float), |
|
Column("tip", Float), |
|
) |
|
metadata_obj.create_all(engine) |
|
|
|
rows = [ |
|
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, |
|
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, |
|
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, |
|
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, |
|
] |
|
for row in rows: |
|
stmt = insert(receipts).values(**row) |
|
with engine.begin() as connection: |
|
cursor = connection.execute(stmt) |
|
|
|
inspector = inspect(engine) |
|
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] |
|
|
|
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) |
|
print(table_description) |
|
|
|
from smolagents import tool |
|
|
|
|
|
@tool |
|
def sql_engine(query: str) -> str: |
|
""" |
|
Allows you to perform SQL queries on the table. Returns a string representation of the result. |
|
The table is named 'receipts'. Its description is as follows: |
|
Columns: |
|
- receipt_id: INTEGER |
|
- customer_name: VARCHAR(16) |
|
- price: FLOAT |
|
- tip: FLOAT |
|
|
|
Args: |
|
query: The query to perform. This should be correct SQL. |
|
""" |
|
output = "" |
|
with engine.connect() as con: |
|
rows = con.execute(text(query)) |
|
for row in rows: |
|
output += "\n" + str(row) |
|
return output |
|
|
|
|
|
from smolagents import CodeAgent, InferenceClientModel |
|
|
|
|
|
agent = CodeAgent( |
|
tools=[sql_engine], |
|
model=InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct"), |
|
) |
|
agent.run("Can you give me the name of the client who got the most expensive receipt?") |
|
|