Upload 2 files
Browse files- docs/source/en/reference/models.md +230 -0
- docs/source/en/reference/tools.md +100 -0
docs/source/en/reference/models.md
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Models
|
2 |
+
|
3 |
+
<Tip warning={true}>
|
4 |
+
|
5 |
+
Smolagents is an experimental API which is subject to change at any time. Results returned by the agents
|
6 |
+
can vary as the APIs or underlying models are prone to change.
|
7 |
+
|
8 |
+
</Tip>
|
9 |
+
|
10 |
+
To learn more about agents and tools make sure to read the [introductory guide](../index). This page
|
11 |
+
contains the API docs for the underlying classes.
|
12 |
+
|
13 |
+
## Models
|
14 |
+
|
15 |
+
### Your custom Model
|
16 |
+
|
17 |
+
You're free to create and use your own models to power your agent.
|
18 |
+
|
19 |
+
You could subclass the base `Model` class to create a model for your agent.
|
20 |
+
The main criteria is to subclass the `generate` method, with these two criteria:
|
21 |
+
1. It follows the [messages format](./chat_templating) (`List[Dict[str, str]]`) for its input `messages`, and it returns an object with a `.content` attribute.
|
22 |
+
2. It stops generating outputs at the sequences passed in the argument `stop_sequences`.
|
23 |
+
|
24 |
+
For defining your LLM, you can make a `CustomModel` class that inherits from the base `Model` class.
|
25 |
+
It should have a generate method that takes a list of [messages](./chat_templating) and returns an object with a .content attribute containing the text. The `generate` method also needs to accept a `stop_sequences` argument that indicates when to stop generating.
|
26 |
+
|
27 |
+
```python
|
28 |
+
from huggingface_hub import login, InferenceClient
|
29 |
+
|
30 |
+
login("<YOUR_HUGGINGFACEHUB_API_TOKEN>")
|
31 |
+
|
32 |
+
model_id = "meta-llama/Llama-3.3-70B-Instruct"
|
33 |
+
|
34 |
+
client = InferenceClient(model=model_id)
|
35 |
+
|
36 |
+
class CustomModel(Model):
|
37 |
+
def generate(messages, stop_sequences=["Task"]):
|
38 |
+
response = client.chat_completion(messages, stop=stop_sequences, max_tokens=1024)
|
39 |
+
answer = response.choices[0].message
|
40 |
+
return answer
|
41 |
+
|
42 |
+
custom_model = CustomModel()
|
43 |
+
```
|
44 |
+
|
45 |
+
Additionally, `generate` can also take a `grammar` argument. In the case where you specify a `grammar` upon agent initialization, this argument will be passed to the calls to model, with the `grammar` that you defined upon initialization, to allow [constrained generation](https://huggingface.co/docs/text-generation-inference/conceptual/guidance) in order to force properly-formatted agent outputs.
|
46 |
+
|
47 |
+
### TransformersModel
|
48 |
+
|
49 |
+
For convenience, we have added a `TransformersModel` that implements the points above by building a local `transformers` pipeline for the model_id given at initialization.
|
50 |
+
|
51 |
+
```python
|
52 |
+
from smolagents import TransformersModel
|
53 |
+
|
54 |
+
model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
55 |
+
|
56 |
+
print(model([{"role": "user", "content": [{"type": "text", "text": "Ok!"}]}], stop_sequences=["great"]))
|
57 |
+
```
|
58 |
+
```text
|
59 |
+
>>> What a
|
60 |
+
```
|
61 |
+
|
62 |
+
> [!TIP]
|
63 |
+
> You must have `transformers` and `torch` installed on your machine. Please run `pip install smolagents[transformers]` if it's not the case.
|
64 |
+
|
65 |
+
[[autodoc]] TransformersModel
|
66 |
+
|
67 |
+
### InferenceClientModel
|
68 |
+
|
69 |
+
The `InferenceClientModel` wraps huggingface_hub's [InferenceClient](https://huggingface.co/docs/huggingface_hub/main/en/guides/inference) for the execution of the LLM. It supports all [Inference Providers](https://huggingface.co/docs/inference-providers/index) available on the Hub: Cerebras, Cohere, Fal, Fireworks, HF-Inference, Hyperbolic, Nebius, Novita, Replicate, SambaNova, Together, and more.
|
70 |
+
|
71 |
+
```python
|
72 |
+
from smolagents import InferenceClientModel
|
73 |
+
|
74 |
+
messages = [
|
75 |
+
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
|
76 |
+
]
|
77 |
+
|
78 |
+
model = InferenceClientModel(provider="novita")
|
79 |
+
print(model(messages))
|
80 |
+
```
|
81 |
+
```text
|
82 |
+
>>> Of course! If you change your mind, feel free to reach out. Take care!
|
83 |
+
```
|
84 |
+
[[autodoc]] InferenceClientModel
|
85 |
+
|
86 |
+
### LiteLLMModel
|
87 |
+
|
88 |
+
The `LiteLLMModel` leverages [LiteLLM](https://www.litellm.ai/) to support 100+ LLMs from various providers.
|
89 |
+
You can pass kwargs upon model initialization that will then be used whenever using the model, for instance below we pass `temperature`.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from smolagents import LiteLLMModel
|
93 |
+
|
94 |
+
messages = [
|
95 |
+
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
|
96 |
+
]
|
97 |
+
|
98 |
+
model = LiteLLMModel(model_id="anthropic/claude-3-5-sonnet-latest", temperature=0.2, max_tokens=10)
|
99 |
+
print(model(messages))
|
100 |
+
```
|
101 |
+
|
102 |
+
[[autodoc]] LiteLLMModel
|
103 |
+
|
104 |
+
### LiteLLMRouterModel
|
105 |
+
|
106 |
+
The `LiteLLMRouterModel` is a wrapper around the [LiteLLM Router](https://docs.litellm.ai/docs/routing) that leverages
|
107 |
+
advanced routing strategies: load-balancing across multiple deployments, prioritizing critical requests via queueing,
|
108 |
+
and implementing basic reliability measures such as cooldowns, fallbacks, and exponential backoff retries.
|
109 |
+
|
110 |
+
```python
|
111 |
+
from smolagents import LiteLLMRouterModel
|
112 |
+
|
113 |
+
messages = [
|
114 |
+
{"role": "user", "content": [{"type": "text", "text": "Hello, how are you?"}]}
|
115 |
+
]
|
116 |
+
|
117 |
+
model = LiteLLMRouterModel(
|
118 |
+
model_id="llama-3.3-70b",
|
119 |
+
model_list=[
|
120 |
+
{
|
121 |
+
"model_name": "llama-3.3-70b",
|
122 |
+
"litellm_params": {"model": "groq/llama-3.3-70b", "api_key": os.getenv("GROQ_API_KEY")},
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"model_name": "llama-3.3-70b",
|
126 |
+
"litellm_params": {"model": "cerebras/llama-3.3-70b", "api_key": os.getenv("CEREBRAS_API_KEY")},
|
127 |
+
},
|
128 |
+
],
|
129 |
+
client_kwargs={
|
130 |
+
"routing_strategy": "simple-shuffle",
|
131 |
+
},
|
132 |
+
)
|
133 |
+
print(model(messages))
|
134 |
+
```
|
135 |
+
|
136 |
+
[[autodoc]] LiteLLMRouterModel
|
137 |
+
|
138 |
+
### OpenAIServerModel
|
139 |
+
|
140 |
+
This class lets you call any OpenAIServer compatible model.
|
141 |
+
Here's how you can set it (you can customise the `api_base` url to point to another server):
|
142 |
+
```py
|
143 |
+
import os
|
144 |
+
from smolagents import OpenAIServerModel
|
145 |
+
|
146 |
+
model = OpenAIServerModel(
|
147 |
+
model_id="gpt-4o",
|
148 |
+
api_base="https://api.openai.com/v1",
|
149 |
+
api_key=os.environ["OPENAI_API_KEY"],
|
150 |
+
)
|
151 |
+
```
|
152 |
+
|
153 |
+
[[autodoc]] OpenAIServerModel
|
154 |
+
|
155 |
+
### AzureOpenAIServerModel
|
156 |
+
|
157 |
+
`AzureOpenAIServerModel` allows you to connect to any Azure OpenAI deployment.
|
158 |
+
|
159 |
+
Below you can find an example of how to set it up, note that you can omit the `azure_endpoint`, `api_key`, and `api_version` arguments, provided you've set the corresponding environment variables -- `AZURE_OPENAI_ENDPOINT`, `AZURE_OPENAI_API_KEY`, and `OPENAI_API_VERSION`.
|
160 |
+
|
161 |
+
Pay attention to the lack of an `AZURE_` prefix for `OPENAI_API_VERSION`, this is due to the way the underlying [openai](https://github.com/openai/openai-python) package is designed.
|
162 |
+
|
163 |
+
```py
|
164 |
+
import os
|
165 |
+
|
166 |
+
from smolagents import AzureOpenAIServerModel
|
167 |
+
|
168 |
+
model = AzureOpenAIServerModel(
|
169 |
+
model_id = os.environ.get("AZURE_OPENAI_MODEL"),
|
170 |
+
azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
|
171 |
+
api_key=os.environ.get("AZURE_OPENAI_API_KEY"),
|
172 |
+
api_version=os.environ.get("OPENAI_API_VERSION")
|
173 |
+
)
|
174 |
+
```
|
175 |
+
|
176 |
+
[[autodoc]] AzureOpenAIServerModel
|
177 |
+
|
178 |
+
### AmazonBedrockServerModel
|
179 |
+
|
180 |
+
`AmazonBedrockServerModel` helps you connect to Amazon Bedrock and run your agent with any available models.
|
181 |
+
|
182 |
+
Below is an example setup. This class also offers additional options for customization.
|
183 |
+
|
184 |
+
```py
|
185 |
+
import os
|
186 |
+
|
187 |
+
from smolagents import AmazonBedrockServerModel
|
188 |
+
|
189 |
+
model = AmazonBedrockServerModel(
|
190 |
+
model_id = os.environ.get("AMAZON_BEDROCK_MODEL_ID"),
|
191 |
+
)
|
192 |
+
```
|
193 |
+
|
194 |
+
[[autodoc]] AmazonBedrockServerModel
|
195 |
+
|
196 |
+
### MLXModel
|
197 |
+
|
198 |
+
|
199 |
+
```python
|
200 |
+
from smolagents import MLXModel
|
201 |
+
|
202 |
+
model = MLXModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
203 |
+
|
204 |
+
print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
|
205 |
+
```
|
206 |
+
```text
|
207 |
+
>>> What a
|
208 |
+
```
|
209 |
+
|
210 |
+
> [!TIP]
|
211 |
+
> You must have `mlx-lm` installed on your machine. Please run `pip install smolagents[mlx-lm]` if it's not the case.
|
212 |
+
|
213 |
+
[[autodoc]] MLXModel
|
214 |
+
|
215 |
+
### VLLMModel
|
216 |
+
|
217 |
+
Model to use [vLLM](https://docs.vllm.ai/) for fast LLM inference and serving.
|
218 |
+
|
219 |
+
```python
|
220 |
+
from smolagents import VLLMModel
|
221 |
+
|
222 |
+
model = VLLMModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
223 |
+
|
224 |
+
print(model([{"role": "user", "content": "Ok!"}], stop_sequences=["great"]))
|
225 |
+
```
|
226 |
+
|
227 |
+
> [!TIP]
|
228 |
+
> You must have `vllm` installed on your machine. Please run `pip install smolagents[vllm]` if it's not the case.
|
229 |
+
|
230 |
+
[[autodoc]] VLLMModel
|
docs/source/en/reference/tools.md
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Tools
|
2 |
+
|
3 |
+
<Tip warning={true}>
|
4 |
+
|
5 |
+
Smolagents is an experimental API which is subject to change at any time. Results returned by the agents
|
6 |
+
can vary as the APIs or underlying models are prone to change.
|
7 |
+
|
8 |
+
</Tip>
|
9 |
+
|
10 |
+
To learn more about agents and tools make sure to read the [introductory guide](../index). This page
|
11 |
+
contains the API docs for the underlying classes.
|
12 |
+
|
13 |
+
## Tools
|
14 |
+
|
15 |
+
### load_tool
|
16 |
+
|
17 |
+
[[autodoc]] load_tool
|
18 |
+
|
19 |
+
### tool
|
20 |
+
|
21 |
+
[[autodoc]] tool
|
22 |
+
|
23 |
+
### Tool
|
24 |
+
|
25 |
+
[[autodoc]] Tool
|
26 |
+
|
27 |
+
### launch_gradio_demo
|
28 |
+
|
29 |
+
[[autodoc]] launch_gradio_demo
|
30 |
+
|
31 |
+
## Default tools
|
32 |
+
|
33 |
+
### PythonInterpreterTool
|
34 |
+
|
35 |
+
[[autodoc]] PythonInterpreterTool
|
36 |
+
|
37 |
+
### FinalAnswerTool
|
38 |
+
|
39 |
+
[[autodoc]] FinalAnswerTool
|
40 |
+
|
41 |
+
### UserInputTool
|
42 |
+
|
43 |
+
[[autodoc]] UserInputTool
|
44 |
+
|
45 |
+
### WebSearchTool
|
46 |
+
|
47 |
+
[[autodoc]] WebSearchTool
|
48 |
+
|
49 |
+
### DuckDuckGoSearchTool
|
50 |
+
|
51 |
+
[[autodoc]] DuckDuckGoSearchTool
|
52 |
+
|
53 |
+
### GoogleSearchTool
|
54 |
+
|
55 |
+
[[autodoc]] GoogleSearchTool
|
56 |
+
|
57 |
+
### VisitWebpageTool
|
58 |
+
|
59 |
+
[[autodoc]] VisitWebpageTool
|
60 |
+
|
61 |
+
### SpeechToTextTool
|
62 |
+
|
63 |
+
[[autodoc]] SpeechToTextTool
|
64 |
+
|
65 |
+
## ToolCollection
|
66 |
+
|
67 |
+
[[autodoc]] ToolCollection
|
68 |
+
|
69 |
+
## MCP Client
|
70 |
+
|
71 |
+
[[autodoc]] smolagents.mcp_client.MCPClient
|
72 |
+
|
73 |
+
## Agent Types
|
74 |
+
|
75 |
+
Agents can handle any type of object in-between tools; tools, being completely multimodal, can accept and return
|
76 |
+
text, image, audio, video, among other types. In order to increase compatibility between tools, as well as to
|
77 |
+
correctly render these returns in ipython (jupyter, colab, ipython notebooks, ...), we implement wrapper classes
|
78 |
+
around these types.
|
79 |
+
|
80 |
+
The wrapped objects should continue behaving as initially; a text object should still behave as a string, an image
|
81 |
+
object should still behave as a `PIL.Image`.
|
82 |
+
|
83 |
+
These types have three specific purposes:
|
84 |
+
|
85 |
+
- Calling `to_raw` on the type should return the underlying object
|
86 |
+
- Calling `to_string` on the type should return the object as a string: that can be the string in case of an `AgentText`
|
87 |
+
but will be the path of the serialized version of the object in other instances
|
88 |
+
- Displaying it in an ipython kernel should display the object correctly
|
89 |
+
|
90 |
+
### AgentText
|
91 |
+
|
92 |
+
[[autodoc]] smolagents.agent_types.AgentText
|
93 |
+
|
94 |
+
### AgentImage
|
95 |
+
|
96 |
+
[[autodoc]] smolagents.agent_types.AgentImage
|
97 |
+
|
98 |
+
### AgentAudio
|
99 |
+
|
100 |
+
[[autodoc]] smolagents.agent_types.AgentAudio
|