# 📚 管理Agent的记忆 [[open-in-colab]] 归根结底,Agent可以定义为由几个简单组件构成:它拥有工具、提示词。最重要的是,它具备对过往步骤的记忆,能够追溯完整的规划、执行和错误历史。 ### 回放Agent的记忆 我们提供了多项功能来审查Agent的过往运行记录。 您可以通过插装(instrumentation)在可视化界面中查看Agent的运行过程,该界面支持对特定步骤进行缩放操作,具体方法参见[插装指南](./inspect_runs)。 您也可以使用`agent.replay()`方法实现回放: 当Agent完成运行后: ```py from smolagents import InferenceClientModel, CodeAgent agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=0) result = agent.run("What's the 20th Fibonacci number?") ``` 若要回放最近一次运行,只需使用: ```py agent.replay() ``` ### 动态修改Agent的记忆 许多高级应用场景需要对Agent的记忆进行动态修改。 您可以通过以下方式访问Agent的记忆: ```py from smolagents import ActionStep system_prompt_step = agent.memory.system_prompt print("The system prompt given to the agent was:") print(system_prompt_step.system_prompt) task_step = agent.memory.steps[0] print("\n\nThe first task step was:") print(task_step.task) for step in agent.memory.steps: if isinstance(step, ActionStep): if step.error is not None: print(f"\nStep {step.step_number} got this error:\n{step.error}\n") else: print(f"\nStep {step.step_number} got these observations:\n{step.observations}\n") ``` 使用`agent.memory.get_full_steps()`可获取完整步骤字典数据。 您还可以通过步骤回调(step callbacks)实现记忆的动态修改。 步骤回调函数可通过参数直接访问`agent`对象,因此能够访问所有记忆步骤并根据需要进行修改。例如,假设您正在监控网页浏览Agent每个步骤的屏幕截图,希望保留最新截图同时删除旧步骤的图片以节省token消耗。 可参考以下代码示例: _注:此代码片段不完整,部分导入语句和对象定义已精简,完整代码请访问[原始脚本](https://github.com/huggingface/smolagents/blob/main/src/smolagents/vision_web_browser.py)_ ```py import helium from PIL import Image from io import BytesIO from time import sleep def update_screenshot(memory_step: ActionStep, agent: CodeAgent) -> None: sleep(1.0) # Let JavaScript animations happen before taking the screenshot driver = helium.get_driver() latest_step = memory_step.step_number for previous_memory_step in agent.memory.steps: # Remove previous screenshots from logs for lean processing if isinstance(previous_memory_step, ActionStep) and previous_memory_step.step_number <= latest_step - 2: previous_memory_step.observations_images = None png_bytes = driver.get_screenshot_as_png() image = Image.open(BytesIO(png_bytes)) memory_step.observations_images = [image.copy()] ``` 最后在初始化Agent时,将此函数传入`step_callbacks`参数: ```py CodeAgent( tools=[WebSearchTool(), go_back, close_popups, search_item_ctrl_f], model=model, additional_authorized_imports=["helium"], step_callbacks=[update_screenshot], max_steps=20, verbosity_level=2, ) ``` 请访问我们的 [vision web browser code](https://github.com/huggingface/smolagents/blob/main/src/smolagents/vision_web_browser.py) 查看完整可运行示例。 ### 分步运行 Agents 当您需要处理耗时数天的工具调用时,这种方式特别有用:您可以逐步执行Agents。这还允许您在每一步更新记忆。 ```py from smolagents import InferenceClientModel, CodeAgent, ActionStep, TaskStep agent = CodeAgent(tools=[], model=InferenceClientModel(), verbosity_level=1) print(agent.memory.system_prompt) task = "What is the 20th Fibonacci number?" # You could modify the memory as needed here by inputting the memory of another agent. # agent.memory.steps = previous_agent.memory.steps # Let's start a new task! agent.memory.steps.append(TaskStep(task=task, task_images=[])) final_answer = None step_number = 1 while final_answer is None and step_number <= 10: memory_step = ActionStep( step_number=step_number, observations_images=[], ) # Run one step. final_answer = agent.step(memory_step) agent.memory.steps.append(memory_step) step_number += 1 # Change the memory as you please! # For instance to update the latest step: # agent.memory.steps[-1] = ... print("The final answer is:", final_answer) ```